Skip to main content
Log in

High voltage pulsed electric field and electroporation technologies for algal biomass processing

  • Review
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The production of animal and terrestrial plant proteins has environmental impacts that could limit their sustainable supply. Proteins from microalgae and macroalgae can support the growing animal-free protein demand sustainably, using non-arable land and seawater. However, current technologies and processes developed for terrestrial plant protein processing have multiple limitations when applied to micro and macroalgae, thus, providing an opportunity for emerging technologies. Here we critically review various methods used for micro and macroalgal cell disruption for protein extraction. The pulsed electric field (PEF) algal biomass process is focused on further and highlighted as a green approach for protein extraction from algae. The potential of high-voltage pulsed electric fields and electroporation technologies for algal protein processing are discussed in detail. Current state of the art, challenges, and perspectives are also discussed. The current review will aid in establishing PEF for processing algal biomass to extract valuable compounds including proteins using a non-thermal and chemical-free approach, thus providing an environmentally friendly solution for protein extraction from algae along with highlighting upscaling and processing challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data will be provided on request.

References

  • Abro R, Kiran N, Ahmed S, Muhammad A, Jatoi AS, Mazari SA, Salma U, Plechkova NV (2022) Extractive desulfurization of fuel oils using deep eutectic solvents – A comprehensive review. J Environ Chem Eng 10:107369

    CAS  Google Scholar 

  • Agarwalla A, Komandur J, Mohanty K (2023) Current trends in the pretreatment of microalgal biomass for efficient and enhanced bioenergy production. Bioresour Technol 369:128330

    CAS  PubMed  Google Scholar 

  • Akaberi S, Gusbeth C, Silve A, Senthilnathan DS, Navarro-López E, Molina-Grima E, Müller G, Frey W (2019) Effect of pulsed electric field treatment on enzymatic hydrolysis of proteins of Scenedesmus almeriensis. Algal Res 43:101656

    Google Scholar 

  • Akaberi S, Krust D, Muller G, Frey W, Gusbeth C (2020) Impact of incubation conditions on protein and C-phycocyanin recovery from Arthrospira platensis post-pulsed electric field treatment. Bioresour Technol 306:123099

    CAS  PubMed  Google Scholar 

  • Alhattab M, Kermanshahi-Pour A, Brooks MS-L (2019) Microalgae disruption techniques for product recovery: Influence of cell wall composition. J Appl Phycol 31:61–88

    Google Scholar 

  • Andre J, Florez-Fernandez N, Dominguez H, Torres MD (2023) Microwave-assisted extraction of Ulva spp. including a stage of selective coagulation of ulvan stimulated by a bio-ionic liquid. Int J Biol Macromol 225:952–963

  • Biris-Dorhoi E-S, Michiu D, Pop CR, Rotar AM, Tofana M, Pop OL, Socaci SA, Farcas AC (2020) Macroalgae—a sustainable source of chemical compounds with biological activities. Nutrients 12:3085

  • Bjarnadóttir M, Aðalbjörnsson BV, Nilsson A, Slizyte R, Roleda MY, Hreggviðsson GÓ, Friðjónsson ÓH, Jónsdóttir R (2018) Palmaria palmata as an alternative protein source: Enzymatic protein extraction, amino acid composition, and nitrogen-to-protein conversion factor. J Appl Phycol 30:2061–2070

    Google Scholar 

  • Bobinaite R, Pataro G, Lamanauskas N, Satkauskas S, Viskelis P, Ferrari G (2015) Application of pulsed electric field in the production of juice and extraction of bioactive compounds from blueberry fruits and their by-products. J Food Sci Technol 52:5898–5905

    CAS  PubMed  Google Scholar 

  • Bocker R, Silva EK (2022) Pulsed electric field assisted extraction of natural food pigments and colorings from plant matrices. Food Chem X 15:100398

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bongaarts J (2020) FAO, IFAD, UNICEF, WFP and WHO The State of Food Security and Nutrition in the World 2020. Transforming food systems for affordable healthy diets FAO, 2020, 320 p. Popul Dev Rev 47:558

  • Brückner K, Griehl C (2023) Permeabilization of the cell wall of Chlorella sorokiniana by the chitosan-degrading protease papain. Algal Res 71:103066

    Google Scholar 

  • Bryzhin AA, Buryak AK, Gantman MG, Zelikman VM, Shilina MI, Tarkhanova IG (2020) Heterogeneous catalysts SILP with phosphotungstic acid for oxidative desulfurization: Effect of ionic liquid. Kinet Catal 61:775–785

    CAS  Google Scholar 

  • Buchmann L, Bloch R, Mathys A (2018) Comprehensive pulsed electric field (PEF) system analysis for microalgae processing. Bioresour Technol 265:268–274

    CAS  PubMed  Google Scholar 

  • Buchmann L, Brandle I, Haberkorn I, Hiestand M, Mathys A (2019) Pulsed electric field based cyclic protein extraction of microalgae towards closed-loop biorefinery concepts. Bioresour Technol 291:121870

    CAS  PubMed  Google Scholar 

  • Buchmann L, Mathys A (2019) Perspective on pulsed electric field treatment in the bio-based industry. Front Bioeng Biotech 7:265

    Google Scholar 

  • Carullo D, Abera BD, Casazza AA, Donsì F, Perego P, Ferrari G, Pataro G (2018) Effect of pulsed electric fields and high pressure homogenization on the aqueous extraction of intracellular compounds from the microalgae Chlorella vulgaris. Algal Res 31:60–69

    Google Scholar 

  • Carullo D, Abera BD, Scognamiglio M, Donsì F, Ferrari G, Pataro G (2022) Application of pulsed electric fields and high-pressure homogenization in biorefinery cascade of C. vulgaris microalgae. Foods 11:471

  • Cermeno M, Kleekayai T, Amigo-Benavent M, Harnedy-Rothwell P, FitzGerald RJ (2020) Current knowledge on the extraction, purification, identification, and validation of bioactive peptides from seaweed. Electrophoresis 41:1694–1717

    CAS  PubMed  Google Scholar 

  • Chen W, Zhongsheng Z, Lee RC (2006) Supramembrane potential-induced electroconformational changes in sodium channel proteins: A potential mechanism involved in electric injury. Burns 32:52–59

    PubMed  Google Scholar 

  • Cheng J, Huang R, Li T, Zhou J, Cen K (2014) Biodiesel from wet microalgae: extraction with hexane after the microwave-assisted transesterification of lipids. Bioresour Technol 170:69–75

    CAS  PubMed  Google Scholar 

  • Chia SR, Chew KW, Zaid HFM, Chu DT, Tao Y, Show PL (2019) Microalgal protein extraction from Chlorella vulgaris FSP-E using triphasic partitioning technique with sonication. Front Bioeng Biotechnol 7:396

    PubMed  PubMed Central  Google Scholar 

  • Cicci A, Sed G, Jessop PG, Bravi M (2018) Circular extraction: an innovative use of switchable solvents for the biomass biorefinery. Green Chem 20:3908–3911

    CAS  Google Scholar 

  • Comuzzo P, Calligaris S (2019) Potential applications of high pressure homogenization in winemaking: A review. Beverages 5:56

    CAS  Google Scholar 

  • Costa M, Pio L, Bule P, Cardoso V, Alfaia CM, Coelho D, Bras J, Fontes C, Prates JAM (2021) An individual alginate lyase is effective in the disruption of Laminaria digitata recalcitrant cell wall. Sci Rep 11:9706

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Coustets M, Joubert-Durigneux V, Herault J, Schoefs B, Blanckaert V, Garnier JP, Teissie J (2015) Optimization of protein electroextraction from microalgae by a flow process. Bioelectrochemistry 103:74–81

    CAS  PubMed  Google Scholar 

  • Coustets M, Teissié J (2016) The use of pulsed electric fields for protein extraction from nanochloropsis and chlorella. In: Jarm T, Kramar P (eds) 1st World Congress on Electroporation and Pulsed Electric Fields in Biology, Medicine and Food & Environmental Technologies. IFMBE Proceedings, vol 53. Springer, Singapore. https://doi.org/10.1007/978-981-287-817-5_88

  • D’hondt E, Martin-Juarez J, Bolado S, Kasperoviciene J, Koreiviene J, Sulcius S, Elst K, Bastiaens L (2017) Cell disruption technologies. In: Gonzalez-Fernandez C, Munoz R (eds) Microalgae-based biofuels and bioproducts. Woodhead Publishing, Duxford pp 133-154

  • Damiani MC, Leonardi PI, Pieroni OI, Cáceres EJ (2019) Ultrastructure of the cyst wall of Haematococcus pluvialis (Chlorophyceae): Wall development and behaviour during cyst germination. Phycologia 45:616–623

    Google Scholar 

  • Davis R, Aden A, Pienkos PT (2011) Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energy 88:3524–3531

    ADS  Google Scholar 

  • de Carvalho JC, Magalhaes AI Jr, de Melo Pereira GV, Medeiros ABP, Sydney EB, Rodrigues C, Aulestia DTM, de Souza Vandenberghe LP, Soccol VT, Soccol CR (2020) Microalgal biomass pretreatment for integrated processing into biofuels, food, and feed. Bioresour Technol 300:122719

    PubMed  Google Scholar 

  • Desai RK, Fernandez MS, Wijffels RH, Eppink MHM (2019) Mild fractionation of hydrophilic and hydrophobic components from Neochloris oleoabundans using ionic liquids. Front Bioeng Biotech 7:284

    Google Scholar 

  • Doevenspeck H (1961) Influencing cells and cell walls by electrostatic impulses. Fleischwirtschaft 13:968–987

    Google Scholar 

  • Draye M, Estager J, Kardos N (2019) Organic sonochemistry: ultrasound in green organic synthesis. In: Goddard J-P, Malacria M, Ollivier C (eds) Activation methods: sonochemistry and high pressure, Vol 2. Wiley, Hoboken pp 1–93

  • Edd JF, Horowitz L, Davalos RV, Mir LM, Rubinsky B (2006) In vivo results of a new focal tissue ablation technique: irreversible electroporation. IEEE Trans Biomed Eng 53:1409–1415

    PubMed  Google Scholar 

  • Einarsdóttir R, Þórarinsdóttir KA, Aðalbjörnsson BV, Guðmundsson M, Marteinsdóttir G, Kristbergsson K (2021) The effect of pulsed electric field-assisted treatment parameters on crude aqueous extraction of Laminaria digitata. J Appl Phycol 33:3287–3296

    Google Scholar 

  • Fleurence J (1999) Seaweed proteins: biochemical, nutritional aspects and potential uses. Trends Food Sci Technol 10:25–28

    CAS  Google Scholar 

  • Floury J, Desrumaux A, Axelos MA, Legrand J (2002) Degradation of methylcellulose during ultra-high pressure homogenisation. Food Hydrocoll 16:47–53

    CAS  Google Scholar 

  • Fu R, Kang L, Zhang C, Fei Q (2023) Application and progress of techno-economic analysis and life cycle assessment in biomanufacturing of fuels and chemicals. Green Chem Eng 4:189–198

    Google Scholar 

  • Galland-Irmouli A-V, Fleurence J, Lamghari R, Luçon M, Rouxel C, Barbaroux O, Bronowicki J-P, Villaume C, Guéant J-L (1999) Nutritional value of proteins from edible seaweed Palmaria palmata (Dulse). J Nutr Biochem 10:353–359

    CAS  PubMed  Google Scholar 

  • Gateau H, Blanckaert V, Veidl B, Burlet-Schiltz O, Pichereaux C, Gargaros A, Marchand J, Schoefs B (2021) Application of pulsed electric fields for the biocompatible extraction of proteins from the microalga Haematococcus pluvialis. Bioelectrochemistry 137:107588

    CAS  PubMed  Google Scholar 

  • Geada P, Moreira C, Silva M, Nunes R, Madureira L, Rocha CMR, Pereira RN, Vicente AA, Teixeira JA (2021) Algal proteins: Production strategies and nutritional and functional properties. Bioresour Technol 332:125125

    CAS  PubMed  Google Scholar 

  • Gerken HG, Donohoe B, Knoshaug EP (2013) Enzymatic cell wall degradation of Chlorella vulgaris and other microalgae for biofuels production. Planta 237:239–253

    CAS  PubMed  Google Scholar 

  • Goettel M, Eing C, Gusbeth C, Straessner R, Frey W (2013) Pulsed electric field assisted extraction of intracellular valuables from microalgae. Algal Res 2:401–408

    Google Scholar 

  • Golberg A, Rae CS, Rubinsky B (2012) Listeria monocytogenes cell wall constituents exert a charge effect on electroporation threshold. Biochim Biophys Acta - Biomembr 1818:689-694

  • Grimi N, Dubois A, Marchal L, Jubeau S, Lebovka NI, Vorobiev E (2014) Selective extraction from microalgae Nannochloropsis sp. using different methods of cell disruption. Bioresour Technol 153:254–259

    CAS  PubMed  Google Scholar 

  • Gunerken E, D’Hondt E, Eppink MH, Garcia-Gonzalez L, Elst K, Wijffels RH (2015) Cell disruption for microalgae biorefineries. Biotechnol Adv 33:243–260

    CAS  PubMed  Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: The challenge of feeding 9 billion people. Science 327:812–818

    CAS  PubMed  ADS  Google Scholar 

  • Haberl S, Miklavcic D, Sersa G, Frey W, Rubinsky B (2013) Cell membrane electroporation-Part 2: the applications. IEEE Electr Insul Mag 29:29–37

    Google Scholar 

  • Hardouin K, Bedoux G, Burlot AS, Nyvall-Collén P, Bourgougnon N (2014) Enzymatic recovery of metabolites from seaweeds: potential applications. Adv BotRes 71:279–320

  • Harnedy PA, FitzGerald RJ (2013) Extraction of protein from the macroalga Palmaria palmata. LWT - Food Sci Technol 51:375–382

    CAS  Google Scholar 

  • Henchion M, Hayes M, Mullen AM, Fenelon M, Tiwari B (2017) Future protein supply and demand: Strategies and factors influencing a sustainable equilibrium. Foods 6:53

    PubMed  PubMed Central  Google Scholar 

  • Inan B, Akın B, Ünlü İD, Koçer AT, Çelik A, Vehapi M, Kaya Y, Özçimen D (2023) Interactive effects of cold and temperate conditions on growth and biochemical content of Antarctic microalga Chlorella variabilis YTU.ANTARCTIC.001. J Appl Phycol 35:625–637

  • O’Connor J, Meaney S, Williams GA, Hayes M (2020) Extraction of protein from four different seaweeds using three different physical pre-treatment strategies. Molecules 25:2005

  • Joubert Y, Fleurence J (2007) Simultaneous extraction of proteins and DNA by an enzymatic treatment of the cell wall of Palmaria palmata (Rhodophyta). J Appl Phycol 20:55–61

    Google Scholar 

  • Junge D (1992) Nerve and muscle excitation. Oxford University Press, Oxford

    Google Scholar 

  • Kadam SU, Alvarez C, Tiwari BK, O’Donnell CP (2017) Extraction and characterization of protein from Irish brown seaweed Ascophyllum nodosum. Food Res Int 99:1021–1027

    CAS  PubMed  Google Scholar 

  • Käferböck A, Smetana S, de Vos R, Schwarz C, Toepfl S, Parniakov O (2020) Sustainable extraction of valuable components from Spirulina assisted by pulsed electric fields technology. Algal Res 48:101914

    Google Scholar 

  • Kashyap M, Ghosh S, Steinbruch E, Levkov K, Israel Á, Bala K, Livney Y, Golberg A (2022) Extracting Water-Soluble Proteins from the Red Macroalgae Gracilaria sp. with Pulsed Electric Field in a Continuous Process. ACS Food Sci Technol 3:562–575

  • Kazir M, Abuhassira Y, Robin A, Nahor O, Luo J, Israel A, Golberg A, Livney YD (2019) Extraction of proteins from two marine macroalgae, Ulva sp. and Gracilaria sp., for food application, and evaluating digestibility, amino acid composition and antioxidant properties of the protein concentrates. Food Hydrocoll 87:194–203

    CAS  Google Scholar 

  • Kim DY, Vijayan D, Praveenkumar R, Han JI, Lee K, Park JY, Chang WS, Lee JS, Oh YK (2016) Cell-wall disruption and lipid/astaxanthin extraction from microalgae: Chlorella and Haematococcus. Bioresour Technol 199:300–310

    CAS  PubMed  Google Scholar 

  • Ko B, Kang S, Kim M, Jahn A, Delgado A, Cho M (2020) Extraction of Saccharina japonica ingredients using pulsed electric fields for value generation from marine biomass. In: 2020 Korea Society of Industrial and Food Engineering Fall Conference and Workshop (2020.11) pp 66–67. (In Korean)

  • Kotnik T, Rems L, Tarek M, Miklavčič D (2019) Membrane electroporation and electropermeabilization: mechanisms and models. Annu Rev Biophys 48:63–91

    CAS  PubMed  Google Scholar 

  • Koyande AK, Chew KW, Rambabu K, Tao Y, Chu D-T, Show P-L (2019) Microalgae: A potential alternative to health supplementation for humans. Food Sci Human Wellness 8:16–24

    Google Scholar 

  • Kranjc M, Miklavčič D (2017) Electric field distribution and electroporation threshold. In: Miklavčič D (ed) Handbook of Electroporation. Springer, Cham, pp 1043–1058

    Google Scholar 

  • Kranjc S, Kranjc M, Scancar J, Jelenc J, Sersa G, Miklavcic D (2016) Electrochemotherapy by pulsed electromagnetic field treatment (PEMF) in mouse melanoma B16F10 in vivo. Radiol Oncol 50:39

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lam MK, Lee KT (2015) Bioethanol production from microalgae. In: Kim S-K (ed) Handbook of Marine Microalgae. Academic Press, Amsterdam, pp 197–208

    Google Scholar 

  • Levkov K, Linzon Y, Mercadal B, Ivorra A, González CA, Golberg A (2020) High-voltage pulsed electric field laboratory device with asymmetric voltage multiplier for marine macroalgae electroporation. Innov Food Sci Emerg Technol 60:102288

    CAS  Google Scholar 

  • Li M, Wang X, Hu J, Zhu J, Niu C, Zhang H, Li C, Wu B, Han C, Mai L (2023) Comprehensive H2O molecules regulation via deep eutectic solvents for ultra-stable zinc metal anode. Angew Chem 62:e202215552

    CAS  Google Scholar 

  • Liu Y, Liu X, Cui Y, Yuan W (2022) Ultrasound for microalgal cell disruption and product extraction: A review. Ultrason Sonochem 87:106054

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loginova K, Shynkaryk M, Lebovka N, Vorobiev E (2010) Acceleration of soluble matter extraction from chicory with pulsed electric fields. J Food Eng 96:374–379

    Google Scholar 

  • Van Krimpen MM, Bikker P, Van der Meer IM, Van der Peet-Schwering CMC, Vereijken JM (2013) Cultivation, processing and nutritional aspects for pigs and poultry of European protein sources as alternatives for imported soybean products (No. 662). Wageningen UR Livestock Research

  • Ma Y-A, Cheng Y-M, Huang J-W, Jen J-F, Huang Y-S, Yu C-C (2014) Effects of ultrasonic and microwave pretreatments on lipid extraction of microalgae. Bioproc Biosyst Eng 37:1543–1549

    CAS  Google Scholar 

  • Marchel M, Cieśliński H, Boczkaj G (2022) Thermal instability of choline chloride-based deep eutectic solvents and its influence on their toxicity─important limitations of DESs as sustainable materials. Ind Eng Chem Res 61:11288–11300

    CAS  Google Scholar 

  • Margenat A, Fabregat C, Jorba M (2023) Microwave-assisted extraction combined with enzymatic pre-treatment for Chlorella vulgaris protein solubilisation. Preprint (version 1). Res Square https://doi.org/10.21203/rs.3.rs-2763204/v1

  • Millward DJ (1999) The nutritional value of plant-based diets in relation to human amino acid and protein requirements. Proc Nutr Soc 58:249–260

    CAS  PubMed  Google Scholar 

  • Mittal R, Tavanandi HA, Mantri VA, Raghavarao K (2017) Ultrasound assisted methods for enhanced extraction of phycobiliproteins from marine macro-algae, Gelidium pusillum (Rhodophyta). Ultrason Sonochem 38:92–103

    CAS  PubMed  Google Scholar 

  • Molino A, Mehariya S, Iovine A, Larocca V, Di Sanzo G, Martino M, Casella P, Chianese S, Musmarra D (2018) Extraction of astaxanthin and lutein from microalga Haematococcus pluvialis in the red phase using CO2 supercritical fluid extraction technology with ethanol as co-solvent. Mar Drugs 16:432

  • Moussa-Ayoub TE, Jäger H, Knorr D, El-Samahy SK, Kroh LW, Rohn S (2017) Impact of pulsed electric fields, high hydrostatic pressure, and thermal pasteurization on selected characteristics of Opuntia dillenii cactus juice. LWT-Food Sci Technol 79:534–542

    CAS  Google Scholar 

  • Nagarajan D, Chang JS, Lee DJ (2020) Pretreatment of microalgal biomass for efficient biohydrogen production - Recent insights and future perspectives. Bioresour Technol 302:122871

    CAS  PubMed  Google Scholar 

  • Naseri A, Jacobsen C, Sejberg JJP, Pedersen TE, Larsen J, Hansen KM, Holdt SL (2020) Multi-extraction and quality of protein and carrageenan from commercial spinosum (Eucheuma denticulatum). Foods 9:1072

    CAS  PubMed  PubMed Central  Google Scholar 

  • United Nations General Assembly (2000) We the peoples: the role of the United nations in the twenty first century: report of the secretary-general. UN

  • Navarro A, Ruiz-Mendez MV, Sanz C, Martinez M, Rego D, Perez AG (2022) Application of pulsed electric fields to pilot and industrial scale virgin olive oil extraction: Impact on organoleptic and functional quality. Foods 11:2022

  • Nemecek T, Jungbluth N, i Canals LM, Schenck R (2016) Environmental impacts of food consumption and nutrition: where are we and what is next? Int J Life Cycle Assess 21:607-620

  • Neumann E, Kakorin S, Toensing K (2000) Principles of membrane electroporation and transport of macromolecules. Methods Mol Med 2000:1–35

    Google Scholar 

  • Neumann E, Rosenheck K (1972) Permeability changes induced by electric impulses in vesicular membranes. J Membr Biol 10:279–290

    CAS  PubMed  Google Scholar 

  • Neumann P, Pesante S, Venegas M, Vidal G (2016) Developments in pre-treatment methods to improve anaerobic digestion of sewage sludge. Rev Environ Sci Bio/tech 15:173–211

    CAS  Google Scholar 

  • Osamede Airouyuwa J, Mostafa H, Riaz A, Maqsood S (2022) Utilization of natural deep eutectic solvents and ultrasound-assisted extraction as green extraction technique for the recovery of bioactive compounds from date palm (Phoenix dactylifera L.) seeds: An investigation into optimization of process parameters. Ultrason Sonochem 91:106233

  • Pardilhó S, Cotas J, Pereira L, Oliveira MB, Dias JM (2022) Marine macroalgae in a circular economy context: A comprehensive analysis focused on residual biomass. Biotechnol Adv 60:107987

    PubMed  Google Scholar 

  • Parniakov O, Barba FJ, Grimi N, Marchal L, Jubeau S, Lebovka N, Vorobiev E (2015) Pulsed electric field and pH assisted selective extraction of intracellular components from microalgae Nannochloropsis. Algal Res 8:128–134

    Google Scholar 

  • Pauly von H, Schwan HP (1959) Über die Impedanz einer Suspension von kugelförmigen Teilchen mit einer Schale: Ein Modell für das dielektrische Verhalten von Zellsuspensionen und von Proteinlösungen. Z Naturforsch 14b:125-131

  • Petrovic Z, Djordjevic V, Milicevic D, Nastasijevic I, Parunovic N (2015) Meat production and consumption: Environmental consequences. Procedia Food Sci 5:235–238

    Google Scholar 

  • Phong WN, Show PL, Ling TC, Juan JC, Ng E-P, Chang J-S (2018) Mild cell disruption methods for bio-functional proteins recovery from microalgae—Recent developments and future perspectives. Algal Res 31:506–516

    Google Scholar 

  • Phusunti N, Cheirsilp B (2020) Integrated protein extraction with bio-oil production for microalgal biorefinery. Algal Res 48:101918

    Google Scholar 

  • Picart-Palmade L, Cunault C, Chevalier-Lucia D, Belleville M-P, Marchesseau S (2019) Potentialities and limits of some non-thermal technologies to improve sustainability of food processing. Front Nutr 5:130

    PubMed  PubMed Central  Google Scholar 

  • Pillet F, Formosa-Dague C, Baaziz H, Dague E, Rols MP (2016) Cell wall as a target for bacteria inactivation by pulsed electric fields. Sci Red 6:19778

    CAS  ADS  Google Scholar 

  • Polikovsky M, Fernand F, Sack M, Frey W, Muller G, Golberg A (2019) In silico food allergenic risk evaluation of proteins extracted from macroalgae Ulva sp. with pulsed electric fields. Food Chem 276:735–744

    CAS  PubMed  Google Scholar 

  • Polikovsky M, Fernand F, Sack M, Frey W, Müller G, Golberg A (2016) Towards marine biorefineries: Selective proteins extractions from marine macroalgae Ulva with pulsed electric fields. Innov Food Sci Emerg Technol 37:194–200

    CAS  Google Scholar 

  • Popper ZA, Michel G, Hervé C, Domozych DS, Willats WG, Tuohy MG, Kloareg B, Stengel DB (2011) Evolution and diversity of plant cell walls: from algae to flowering plants. Annu Rev Plant Biol 62:567–590

    CAS  PubMed  Google Scholar 

  • Postma P, Fernandes D, Timmermans R, Vermuë M, Barbosa M, Eppink M, Wijffels R, Olivieri G (2017) Pulsed electric field for protein release of the microalgae Chlorella vulgaris and Neochloris oleoabundans. Algal Res 24:181–187

    Google Scholar 

  • Postma PR, Cerezo-Chinarro O, Akkerman RJ, Olivieri G, Wijffels RH, Brandenburg WA, Eppink MHM (2018) Biorefinery of the macroalgae Ulva lactuca: extraction of proteins and carbohydrates by mild disintegration. J Appl Phycol 30:1281–1293

    CAS  PubMed  Google Scholar 

  • Postma PR, Miron TL, Olivieri G, Barbosa MJ, Wijffels RH, Eppink MHM (2015) Mild disintegration of the green microalgae Chlorella vulgaris using bead milling. Bioresour Technol 184:297–304

    CAS  PubMed  Google Scholar 

  • Postma PR, Pataro G, Capitoli M, Barbosa MJ, Wijffels RH, Eppink MH, Olivieri G, Ferrari G (2016) Selective extraction of intracellular components from the microalga Chlorella vulgaris by combined pulsed electric field-temperature treatment. Bioresour Technol 203:80–88

    CAS  PubMed  Google Scholar 

  • Prabhu MS, Israel A, Palatnik RR, Zilberman D, Golberg A (2020) Integrated biorefinery process for sustainable fractionation of Ulva ohnoi (Chlorophyta): Process optimization and revenue analysis. J Appl Phycol 32:2271–2282

    CAS  Google Scholar 

  • Prabhu MS, Levkov K, Livney YD, Israel A, Golberg A (2019) High-voltage pulsed electric field preprocessing enhances extraction of starch, proteins, and ash from marine macroalgae Ulva ohnoi. ACS Sust Chem Eng 7:17453–17463

    CAS  Google Scholar 

  • Priyadarshini A, Tiwari BK, Rajauria G (2022) Assessing the environmental and economic sustainability of functional food ingredient production process. Processes 10:445

    CAS  Google Scholar 

  • Ren H, Chen C, Wang Q, Zhao D, Guo S (2016) The properties of choline chloride-based deep eutectic solvents and their performance in the dissolution of cellulose. BioResources 11:5435–5451

    CAS  Google Scholar 

  • Robin A, Kazir M, Sack M, Israel A, Frey W, Mueller G, Livney YD, Golberg A (2018a) functional protein concentrates extracted from the green marine macroalga Ulva sp., by high voltage pulsed electric fields and mechanical press. ACS Sustain Chem Eng 6:13696–13705

  • Robin A, Sack M, Israel A, Frey W, Müller G, Golberg A (2018b) Deashing macroalgae biomass by pulsed electric field treatment. Bioresour Technol 255:131–139

    CAS  PubMed  Google Scholar 

  • Rokicka M, Zieliński M, Dudek M, Dębowski M (2020) Effects of ultrasonic and microwave pretreatment on lipid extraction of microalgae and methane production from the residual extracted biomass. BioEnergy Res 14:752–760

    Google Scholar 

  • Sack M, Sigler J, Frenzel S, Eing C, Arnold J, Michelberger T, Frey W, Attmann F, Stukenbrock L, Müller G (2010) Research on industrial-scale electroporation devices fostering the extraction of substances from biological tissue. Food Eng Rev 2:147–156

    CAS  Google Scholar 

  • Safi C, Frances C, Ursu AV, Laroche C, Pouzet C, Vaca-Garcia C, Pontalier P-Y (2015) Understanding the effect of cell disruption methods on the diffusion of Chlorella vulgaris proteins and pigments in the aqueous phase. Algal Res 8:61–68

    Google Scholar 

  • Safi C, Ursu AV, Laroche C, Zebib B, Merah O, Pontalier P-Y, Vaca-Garcia C (2014) Aqueous extraction of proteins from microalgae: Effect of different cell disruption methods. Algal Res 3:61–65

    Google Scholar 

  • Sarantopoulos CN, Banyard DA, Ziegler ME, Sun B, Shaterian A, Widgerow AD (2018) Elucidating the preadipocyte and its role in adipocyte formation: a comprehensive review. Stem Cell Rev Rep 14:27–42

    CAS  PubMed  Google Scholar 

  • Sari YW, Bruins ME, Sanders JPM (2013) Enzyme assisted protein extraction from rapeseed, soybean, and microalgae meals. Ind Crops Prod 43:78–83

    CAS  Google Scholar 

  • Scherer D, Krust D, Frey W, Mueller G, Nick P, Gusbeth C (2019) Pulsed electric field (PEF)-assisted protein recovery from Chlorella vulgaris is mediated by an enzymatic process after cell death. Algal Res 41:101536

    Google Scholar 

  • Schwenzfeier A, Wierenga PA, Gruppen H (2011) Isolation and characterization of soluble protein from the green microalgae Tetraselmis sp. Bioresour Technol 102:9121–9127

    CAS  PubMed  Google Scholar 

  • Sed G, Cicci A, Jessop PG, Bravi M (2018) A novel switchable-hydrophilicity, natural deep eutectic solvent (NaDES)-based system for bio-safe biorefinery. RSC Adv 8:37092–37097

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Silve A, Kian CB, Papachristou I, Kubisch C, Nazarova N, Wüstner R, Leber K, Straessner R, Frey W (2018a) Incubation time after pulsed electric field treatment of microalgae enhances the efficiency of extraction processes and enables the reduction of specific treatment energy. Bioresour Technol 269:179–187

    CAS  PubMed  Google Scholar 

  • Silve A, Papachristou I, Wüstner R, Sträßner R, Schirmer M, Leber K, Guo B, Interrante L, Posten C, Frey W (2018b) Extraction of lipids from wet microalga Auxenochlorella protothecoides using pulsed electric field treatment and ethanol-hexane blends. Algal Res 29:212–222

    Google Scholar 

  • Singh S, Meena P, Saharan VK, Bhoi R, George S (2022) Enhanced lipid recovery from Chlorella sp. Biomass by green approach: A combination of ultrasonication and homogenization pre-treatment techniques (hybrid method) using aqueous deep eutectic solvents. Mater Today: Proc 57:179–186

    CAS  Google Scholar 

  • Soto-Sierra L, Stoykova P, Nikolov ZL (2018) Extraction and fractionation of microalgae-based protein products. Algal Res 36:175–192

    Google Scholar 

  • Steinbruch E, Wise J, Levkov K, Chemodanov A, Israel Á, Livney YD, Golberg A (2023) Enzymatic cell wall degradation combined with pulsed electric fields increases yields of water-soluble-protein extraction from the green marine macroalga Ulva sp. Innov Food Sci Emerg Technol 84:103231

    CAS  Google Scholar 

  • Stengel DB, Connan S, Popper ZA (2011) Algal chemodiversity and bioactivity: sources of natural variability and implications for commercial application. Biotechnol Adv 29:483–501

    CAS  PubMed  Google Scholar 

  • Stephen GB (1960) Artificial mutation of micro-organisms by electrical shock. US Patent 61403056A

  • Suarez Garcia E, van Leeuwen J, Safi C, Sijtsma L, Eppink MHM, Wijffels RH, van den Berg C (2018) Selective and energy efficient extraction of functional proteins from microalgae for food applications. Bioresour Technol 268:197–203

    CAS  PubMed  Google Scholar 

  • Suwal S, Perreault V, Marciniak A, Tamigneaux É, Deslandes É, Bazinet L, Jacques H, Beaulieu L, Doyen A (2019) Effects of high hydrostatic pressure and polysaccharidases on the extraction of antioxidant compounds from red macroalgae, Palmaria palmata and Solieria chordalis. J Food Eng 252:53–59

    CAS  Google Scholar 

  • 't Lam GP, van der Kolk JA, Chordia A, Vermue MH, Olivieri G, Eppink MHM, Wijffels RH (2017) Mild and selective protein release of cell wall deficient microalgae with pulsed electric field. ACS Sust Chem Eng 5:6046-6053

  • Teissie J, Golzio M, Rols M (2005) Mechanisms of cell membrane electropermeabilization: A minireview of our present (lack of?) knowledge. Biochim Biophys Acta - Gen Subj 1724:270–280

    CAS  Google Scholar 

  • Tian Y, Zhao L, Zhang G, Chang Z (2023) Design and optimization of pulsed electric field sterilization system for high flow rate applications. In: 2023 IEEE 6th International Electrical and Energy Conference (CIEEC), Hefei, China, pp 4115–4119

  • Toepfl S, Heinz V, Knorr D (2007) High intensity pulsed electric fields applied for food preservation. Chem Eng Process: Process Intensificat 46:537–546

    CAS  Google Scholar 

  • Toepfl S, Mathys A, Heinz V, Knorr D (2006) Review: Potential of high hydrostatic pressure and pulsed electric fields for energy efficient and environmentally friendly food processing. Food Rev Int 22:405–423

    CAS  Google Scholar 

  • Troter DZ, Todorović ZB, Đokić-Stojanović DR, Stamenković OS, Veljković VB (2016) Application of ionic liquids and deep eutectic solvents in biodiesel production: A review. Renew Sustain Energy Rev 61:473–500

    CAS  Google Scholar 

  • Tylewicz U (2020) How does pulsed electric field work? In: Barba FJ, Parniakov O, Wiktor A (eds) Pulsed Electric Fields to Obtain Healthier and Sustainable Food for Tomorrow. Academic Press, London, pp 3–21

    Google Scholar 

  • Unis R, Chemodanov A, Gnayem N, Gnaim R, Israel Á, Palatnik RR, Zilberman D, Gnaim J, Golberg A (2023) Effect of seasonality on the amino acid and monosaccharide profile from the green seaweed Ulva lactuca cultivated in plastic sleeves onshore (Mikhmoret, Israel). J Appl Phycol 35:1347–1363

    CAS  Google Scholar 

  • Velazquez-Lucio J, Rodríguez-Jasso RM, Colla LM, Sáenz-Galindo A, Cervantes-Cisneros DE, Aguilar CN, Fernandes BD, Ruiz HA (2018) Microalgal biomass pretreatment for bioethanol production: a review. Biofuel Res J 1:780–791

  • Vilg JV, Undeland I (2017) pH-driven solubilization and isoelectric precipitation of proteins from the brown seaweed Saccharina latissima-effects of osmotic shock, water volume and temperature. J Appl Phycol 29:585–593

    CAS  PubMed  Google Scholar 

  • Vishwakarma R, Malik A (2022) Partial enzymatic cell wall disruption of Oocystis sp. for simultaneous cultivation and extraction. Sep Purif Technol 293:121107

  • Walstra P (1993) Principles of emulsion formation. Chem Eng Sci 48:333–349

    CAS  Google Scholar 

  • Wang M, Zhou J, Castagnini JM, Berrada H, Barba FJ (2023) Pulsed electric field (PEF) recovery of biomolecules from Chlorella: Extract efficiency, nutrient relative value, and algae morphology analysis. Food Chem 404:134615

    CAS  PubMed  Google Scholar 

  • Wang Y, Tibbetts SM, McGinn PJ (2021) Microalgae as sources of high-quality protein for human food and protein supplements. Foods 10:3002

  • Yamamoto K, King PM, Wu X, Mason TJ, Joyce EM (2015) Effect of ultrasonic frequency and power on the disruption of algal cells. Ultrason Sonochem 24:165–171

    CAS  PubMed  Google Scholar 

  • Yap BHJ, Dumsday GJ, Scales PJ, Martin GJO (2015) Energy evaluation of algal cell disruption by high pressure homogenisation. Bioresour Technol 184:280–285

    CAS  PubMed  Google Scholar 

  • Yoo G, Yoo Y, Kwon J-H, Darpito C, Mishra SK, Pak K, Park MS, Im SG, Yang J-W (2014) An effective, cost-efficient extraction method of biomass from wet microalgae with a functional polymeric membrane. Green Chem 16:312–319

    CAS  Google Scholar 

  • Zbinden MDA, Sturm BSM, Nord RD, Carey WJ, Moore D, Shinogle H, Stagg-Williams SM (2013) Pulsed electric field (PEF) as an intensification pretreatment for greener solvent lipid extraction from microalgae. Biotechnol Bioeng 110:1605–1615

    PubMed  Google Scholar 

  • Zhou AY, Robertson J, Hamid N, Ma Q, Lu J (2015) Changes in total nitrogen and amino acid composition of New Zealand Undaria pinnatifida with growth, location and plant parts. Food Chem 186:319–325

    CAS  PubMed  Google Scholar 

  • Zimmermann U, Pilwat G, Riemann F (1974) Dielectric breakdown of cell membranes. Biophys J 14:881–899

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zollmann M, Robin A, Prabhu M, Polikovsky M, Gillis A, Greiserman S, Golberg A (2019) Green technology in green macroalgal biorefineries. Phycologia 58:516–534

    Google Scholar 

Download references

Acknowledgements

The authors thank Porter School of Earth and Environmental Sciences, Tel Aviv University, Israel, and Good Food Institute, Israel, for the motivation and facilities.

Funding

Mrinal Kashyap will like to thank the sandwich VATA fellowship funded by Council for higher education, Israel.

Author information

Authors and Affiliations

Authors

Contributions

Mrinal Kashyap: conceptualization, writing-original draft. Supratim Ghosh: writing, reviewing, and editing the manuscript draft. Alexander Golberg: supervised the conceptualization, funding, writing, reviewing, and editing. Kiran Bala: contributed by supervising, revising, and editing the manuscript.

Corresponding authors

Correspondence to Mrinal Kashyap or Alexander Golberg.

Ethics declarations

Competing interests

Alexander Golberg has patent applications on devices using pulsed electric field technologies for seaweed processing with Ramot, Tel Aviv University. Alexander Golberg has a financial interest in Genesea Advanced Technologies Ltd, which focuses on seaweed protein production.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashyap, M., Ghosh, S., Bala, K. et al. High voltage pulsed electric field and electroporation technologies for algal biomass processing. J Appl Phycol 36, 273–289 (2024). https://doi.org/10.1007/s10811-023-03145-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-023-03145-2

Keywords

Navigation