Skip to main content
Log in

A review of the representative microalgal-derived reactive oxygen species: Possible formation, ecophysiological implications, and metabolomic-based evaluations

  • Review
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Reactive oxygen species (ROS) play a crucial role in regulating cell division and differentiation. However, a much uncertainty exists around the ecophysiological functions played by the extracellular ROS produced by the microalgae, and strategies for gaining a better understanding of the microalgae-induced stresses on the environment are just beginning to emerge. The scope and objective of this study was to provide an overview of microalgae-derived extracellular ROS generation, the subcellular processes, and roles of extracellular ROS. In addition, our goal was to present a thorough and current review of microalgae-derived extracellular ROS and metabolomics-based evaluation of its influences to identify relevant biochemical indicators that may be utilized for monitoring risk. The findings showed that microalgae have a wide range of cell-normalized rates of extracellular ROS production. The possible ecophysiological roles of extracellular ROS generation in microalgae include biotoxicity/growth stimulation, allelopathy, and iron acquisition. Currently, much variability is seen among the analytical methods used and identified effective data reported in numerous studies on the ecotoxicological dynamics of microalgae-derived extracellular ROS. An urgent need exists for a study that employs interdisciplinary methods such as “multi-omic” approaches to identify biomarkers that may be utilized for monitoring ecological risk. The forthcoming insights into the basis of extracellular ROS production would help reveal the ecophysiological significance of microalgae-derived extracellular ROS in natural aquatic systems. The significance of these findings can be clarified by combined the results with high-performance analytical methods for the direct quantification of extracellular ROS dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Allan EL, Ambrose ST, Richoux NB, Froneman PW (2010) Determining spatial changes in the diet of nearshore suspension-feeders along the south african coastline: Stable isotope and fatty acid signatures. Estuar Coast Shelf Sci 87:463–471

    CAS  ADS  Google Scholar 

  • Anderson A, Laohavisit A, Blaby IK, Bombelli P, Howe CJ, Merchant SS, Davies JM, Smith AG (2016) Exploiting algal NADPH oxidase for biophotovoltaic energy. Plant Biotech J 14:22–28

    CAS  Google Scholar 

  • Anderson DM (2009) Approaches to monitoring, control and management of harmful algal blooms (HABs). Ocean Coast Manag 52:342–347

    PubMed  PubMed Central  Google Scholar 

  • Ankley GT, Daston GP, Degitz SJ, Denslow ND, Hoke RA, Kennedy SW, Miracle AL, Perkins EJ, Snape J, Tillitt DE, Tyler CR, Versteeg D (2006) Toxicogenomics in regulatory ecotoxicology. Environ Sci Technol 40:4055–4065

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Aquino-Cruz A, Band-Schmidt CJ, Zenteno-Savín T (2020) Superoxide production rates and hemolytic activity linked to cellular growth phases in Chattonella species (Raphidophyceae) and Margalefidinium polykrikoides (Dinophyceae). J Appl Phycol 32:4029–4046

    CAS  Google Scholar 

  • Arora N, Dubey D, Sharma M, Patel A, Guleria A, Pruthi PA, Kumar D, Pruthi V, Poluri KM (2018) NMR-based metabolomic approach to elucidate the differential cellular responses during mitigation of arsenic (III, V) in a green microalga. ACS Omega 3:11847–11856

    CAS  PubMed  PubMed Central  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bleier L, Dröse S (2013) Superoxide generation by complex III: From mechanistic rationales to functional consequences. Biochim Biophys Acta - Bioenerg 1827:1320–1331

    CAS  Google Scholar 

  • Bolwell GP, Wojtaszek P (1997) Mechanisms for the generation of reactive oxygen species in plant defence – a broad perspective. Physiol Mol Plant Pathol 51:347–366

    CAS  Google Scholar 

  • Bonekamp NA, Völkl A, Fahimi HD, Schrader M (2009) Reactive oxygen species and peroxisomes: Struggling for balance. BioFactors 35:346–355

    CAS  PubMed  Google Scholar 

  • Booij P, Lamoree HM, Sjollema BS, de Voogt P, Schollee EJ, Vethaak AD, Leonards PEG (2014) Non-target metabolomic profiling of the marine microalgae Dunaliella tertiolecta after exposure to diuron using complementary high- resolution analytical techniques. Curr Metabolomics 2:213–222

  • Bouchez C, Devin A (2019) Mitochondrial biogenesis and mitochondrial reactive oxygen species (ROS): A complex relationship regulated by the CAMP/PKA signaling pathway. Cells 8:287

    CAS  PubMed  PubMed Central  Google Scholar 

  • Broadhurst DI, Kell DB (2006) Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics 2:171–196

    CAS  Google Scholar 

  • Bulua AC, Simon A, Maddipati R, Pelletier M, Park H, Kim K-Y, Sack MN, Kastner DL, Siegel RM (2011) Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J Exp Med 208:519–533

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bundy JG, Davey MP, Viant MR (2009) Environmental metabolomics: A critical review and future perspectives. Metabolomics 5:3–21

    CAS  Google Scholar 

  • Bundy JG, Keun HC, Sidhu JK, Spurgeon DJ, Svendsen C, Kille P, Morgan AJ (2007) Metabolic profile biomarkers of metal contamination in a sentinel terrestrial species are applicable across multiple sites. Environ Sci Technol 41:4458–4464

    CAS  PubMed  ADS  Google Scholar 

  • Cadenas E (1989) Biochemistry of oxygen toxicity. Annu Rev Biochem 58:79–110

    CAS  PubMed  Google Scholar 

  • Cao J, Wang C, Hao N, Fujiwara T, Wu T (2022) Endoplasmic reticulum stress and reactive oxygen species in plants. Antioxidants 11:1240

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cembella AD, Quilliam MA, Lewis NI, Bauder AG, Dell’Aversano C, Thomas K, Jellett J, Cusack RR (2002) The toxigenic marine dinoflagellate Alexandrium tamarense as the probable cause of mortality of caged salmon in Nova Scotia. Harmful Algae 1:313–325

    CAS  Google Scholar 

  • Chen THH, Murata N (2011) Glycinebetaine protects plants against abiotic stress: Mechanisms and biotechnological applications. Plant Cell Environ 34:1–20

    PubMed  Google Scholar 

  • Chew KW, Yap JY, Show PL, Suan NH, Juan JC, Ling TC, Lee D-J, Chang J-S (2017) Microalgae biorefinery: High value products perspectives. Bioresour Technol 229:53–62

    CAS  PubMed  Google Scholar 

  • Chipurupalli S, Samavedam U, Robinson N (2021) Crosstalk between ER stress, autophagy and inflammation. Front Med 8:758311

    Google Scholar 

  • Cho K, Kasaoka T, Ueno M, Basti L, Yamasaki Y, Kim D, Oda T (2017) Haemolytic activity and reactive oxygen species production of four harmful algal bloom species. Eur J Phycol 52:311–319

    CAS  Google Scholar 

  • Cho K, Sakamoto J, Noda T, Nishiguchi T, Ueno M, Yamasaki Y, Yagi M, Kim D, Oda T (2016) Comparative studies on the fish-killing activities of Chattonella marina isolated in 1985 and Chattonella antiqua isolated in 2010, and their possible toxic factors. Biosci Biotechnol Biochem 80:811–817

    CAS  PubMed  Google Scholar 

  • Cohen MS, Metcalf JA, Root RK (1980) Regulation of oxygen metabolism in human granulocytes: Relationship between stimulus binding and oxidative response using plant lectins as probes. Blood 55:1003–1010

    CAS  PubMed  Google Scholar 

  • Corpas FJ, González-Gordo S, Palma JM (2020) Plant peroxisomes: A factory of reactive species. Front Plant Sci 11:853

    PubMed  PubMed Central  Google Scholar 

  • Cory RM, Davis TW, Dick GJ, Johengen T, Denef VJ, Berry MA, Page SE, Watson SB, Yuhas K, Kling GW (2016) Seasonal dynamics in dissolved organic matter, hydrogen peroxide, and cyanobacterial blooms in Lake Erie. Front Mar Sci 3:54

    Google Scholar 

  • D’Amelia V, Aversano R, Chiaiese P, Carputo D (2018) The antioxidant properties of plant flavonoids: Their exploitation by molecular plant breeding. Phytochem Rev 17:611–625

    Google Scholar 

  • Dalsgaard J, St. John M, Kattner G, Müller-Navarra D, Hagen WBT-A in MB (2003) Fatty acid trophic markers in the pelagic marine environment. Adv Mar Biol 46:225–340

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53

    Google Scholar 

  • De Gara L, De Pinto MC, Tommasi F (2003) The antioxidant systems vis-à-vis reactive oxygen species during plant–pathogen interaction. Plant Physiol Biochem 41:863–870

    Google Scholar 

  • del Río LA, López-Huertas E (2016) ROS generation in peroxisomes and its role in cell signaling. Plant Cell Physiol 57:1364–1376

    PubMed  Google Scholar 

  • Delaunay-Moisan A, Appenzeller-Herzog C (2015) The antioxidant machinery of the endoplasmic reticulum: Protection and signaling. Free Radic Biol Med 83:341–351

    CAS  PubMed  Google Scholar 

  • Diaz JM, Plummer S, Hansel CM, Andeer PF, Saito MA, McIlvin MR (2019) NADPH-dependent extracellular superoxide production is vital to photophysiology in the marine diatom Thalassiosira oceanica. Proc Natl Acad Sci 116:16448–16453

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Diaz JM, Plummer S, Tomas C, Alves-de-Souza C (2018) Production of extracellular superoxide and hydrogen peroxide by five marine species of harmful bloom-forming algae. J Plankton Res 40:667–677

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dorantes-Aranda JJ, Nichols PD, David Waite T, Hallegraeff GM (2013) Strain variability in fatty acid composition of Chattonella marina (Raphidophyceae) and its relation to differing ichthyotoxicity toward rainbow trout gill cells. J Phycol 49:427–438

    CAS  PubMed  Google Scholar 

  • Dorantes-Aranda JJ, Seger A, Mardones JI, Nichols PD, Hallegraeff GM (2015) Progress in understanding algal bloom-mediated fish kills: The role of superoxide radicals, phycotoxins and fatty acids. PLoS One 10:e0133549

    PubMed  PubMed Central  Google Scholar 

  • El-Sabaawi R, Dower JF, Kainz M, Mazumder A (2009) Characterizing dietary variability and trophic positions of coastal calanoid copepods: Insight from stable isotopes and fatty acids. Mar Biol 156:225–237

    CAS  Google Scholar 

  • Fan SM (2008) Photochemical and biochemical controls on reactive oxygen and iron speciation in the pelagic surface ocean. Mar Chem 109:152–164

    CAS  Google Scholar 

  • Fiehn O (2002) Metabolomics – the link between genotypes and phenotypes. Plant Mol Biol 48:155–171

    CAS  PubMed  Google Scholar 

  • Filimonova V, Gonçalves F, Marques JC, De Troch M, Gonçalves AMM (2016) Biochemical and toxicological effects of organic (herbicide Primextra® Gold TZ) and inorganic (copper) compounds on zooplankton and phytoplankton species. Aquat Toxicol 177:33–43

    CAS  PubMed  Google Scholar 

  • Finkel T (2011) Signal transduction by reactive oxygen species. J Cell Biol 194:7–15

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fleeger JW, Carman KR, Nisbet RM (2003) Indirect effects of contaminants in aquatic ecosystems. Sci Total Environ 317:207–233

    CAS  PubMed  ADS  Google Scholar 

  • Flores HS, Wikfors GH, Dam HG (2012) Reactive oxygen species are linked to the toxicity of the dinoflagellate Alexandrium spp. to protists. Aquat Microb Ecol 66:199–209

    Google Scholar 

  • Fontana A, D’Ippolito G, Cutignano A, Romano G, Lamari N, Massa Gallucci A, Cimino G, Miralto A, Ianora A (2007) LOX-induced lipid peroxidation mechanism responsible for the detrimental effect of marine diatoms on zooplankton grazers. ChemBioChem 8:1810–1818

    CAS  PubMed  Google Scholar 

  • Frank M, Duvezin-Caubet S, Koob S, Occhipinti A, Jagasia R, Petcherski A, Ruonala MO, Priault M, Salin B, Reichert AS (2012) Mitophagy is triggered by mild oxidative stress in a mitochondrial fission dependent manner. Biochim Biophys Acta - Mol Cell Res 1823:2297–2310

    CAS  Google Scholar 

  • Fransen M, Nordgren M, Wang B, Apanasets O (2012) Role of peroxisomes in ROS/RNS-metabolism: Implications for human disease. Biochim Biophys Acta - Mol Basis Dis 1822:1363–1373

    CAS  Google Scholar 

  • Fridovich I (1998) Oxygen toxicity: A radical explanation. J Exp Biol 201:1203–1209

    CAS  PubMed  Google Scholar 

  • Fujii M, Dang TC, Rose AL, Omura T, Waite TD (2011) Effect of light on iron uptake by the freshwater cyanobacterium Microcystis aeruginosa. Environ Sci Technol 45:1391–1398

    CAS  PubMed  ADS  Google Scholar 

  • Fukai T, Ushio-Fukai M (2011) Superoxide dismutases: Role in redox signaling, vascular function, and diseases. Antioxid Redox Signal 15:1583–1606

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ganguli G, Mukherjee U, Sonawane A (2019) Peroxisomes and oxidative stress: Their implications in the modulation of cellular immunity during mycobacterial infection. Front Microbiol 10:1121

    PubMed  PubMed Central  Google Scholar 

  • Ghemrawi R, Battaglia-Hsu S-F, Arnold C (2018) Endoplasmic reticulum stress in metabolic disorders. Cells 7:63

    PubMed  PubMed Central  Google Scholar 

  • Gonçalves AMM, Azeiteiro UM, Pardal MA, De Troch M (2012) Fatty acid profiling reveals seasonal and spatial shifts in zooplankton diet in a temperate estuary. Estuar Coast Shelf Sci 109:70–80

    ADS  Google Scholar 

  • Gonçalves S, Kahlert M, Almeida SFP, Figueira E (2018a) A freshwater diatom challenged by Zn: Biochemical, physiological and metabolomic responses of Tabellaria flocculosa (Roth) Kützing. Environ Pollut 238:959–971

    PubMed  Google Scholar 

  • Gonçalves S, Kahlert M, Almeida SFP, Figueira E (2018b) Assessing Cu impacts on freshwater diatoms: Biochemical and metabolomic responses of Tabellaria flocculosa (Roth) Kützing. Sci Total Environ 625:1234–1246

    PubMed  ADS  Google Scholar 

  • Graham VA, Ankley GT, Baldwin WS, Bearden DW, Benson WH, Chipman JK, Collette TW, Craft JA, Denslow ND, Embry MR, Falciani F, George SG, Helbing CC, Hoekstra PF, Iguchi T, Kagami Y, Katsiadaki I, Kille P, Liu L, Lord PG, McIntyre T, O’Neill A, Osachoff H, Perkins EJ, Santos EM, Skirrow RC, Snape JR, Tyler CR, Versteeg D, Viant MR, Volz DC, Williams TD, Yu L (2010) Integrating omic technologies into aquatic ecological risk assessment and environmental monitoring: Hurdles, achievements, and future outlook. Environ Health Perspect 118:1–5

    Google Scholar 

  • Granéli E, Hansen PJ (2006) Allelopathy in harmful algae: a mechanism to compete for resources? In: Granéli E, Turner JT (eds) Ecology of harmful algae. Springer, Berlin, pp 189–201

    Google Scholar 

  • Guasch H, Artigas J, Bonet B, Bonnineau C, Canals O, Corcoll N, Foulquier A, López-Doval J, Kim-Tiam S, Morin S, Navarro E, Pesce S, Proia L, Salvadó H, Serra A (2016) The use of biofilms to assess the effects of chemicals on freshwater ecosystems. In: Romaní AM, Guasch H, Balaguer MD (eds) Aquatic biofilms: Ecology, water quality and wastewater treatment. Caister Academic Press, Wymondham, pp 125–144

    Google Scholar 

  • Halliwell B, Gutteridge JMC (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219:1–14

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hansel CM, Buchwald C, Diaz JM, Ossolinski JE, Dyhrman ST, Van Mooy BAS, Polyviou D (2016) Dynamics of extracellular superoxide production by Trichodesmium colonies from the Sargasso Sea. Limnol Oceanogr 61:1188–1200

    ADS  Google Scholar 

  • Hansel CM, Diaz JM (2021) Production of extracellular reactive oxygen species by marine biota. Annu Rev Mar Sci 13:177–200

    ADS  Google Scholar 

  • Hattenrath-Lehmann TK, Zhen Y, Wallace RB, Tang Y-Z, Gobler CJ (2016) Mapping the distribution of cysts from the toxic dinoflagellate Cochlodinium polykrikoides in bloom-prone estuaries by a novel fluorescence in situ hybridization assay. Appl Environ Microbiol 82:1114–1125

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Hazeem LJ, Kuku G, Dewailly E, Slomianny C, Barras A, Hamdi A, Boukherroub R, Culha M, Bououdina M (2019) Toxicity effect of silver nanoparticles on photosynthetic pigment content, growth, ROS production and ultrastructural changes of microalgae Chlorella vulgaris. Nanomaterials 9:914

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heller MI, Wuttig K, Croot PL (2016) Identifying the sources and sinks of CDOM/FDOM across the Mauritanian shelf and their potential role in the decomposition of superoxide (O2-). Front Mar Sci 3:132

    Google Scholar 

  • Hou C, Metcalfe NB, Salin K (2021) Is mitochondrial reactive oxygen species production proportional to oxygen consumption? A theoretical consideration. Bioessays 43:2000165

    CAS  Google Scholar 

  • Hu J, Guo R, Lu D, Dai X, Zhu Y, Park BS, Wang P (2022) Detection and quantification of the harmful dinoflagellate Margalefidinium polykrikoides (East Asian ribotype) in the coastal waters of China. Toxins 14:95

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. Plant J 54:621–639

    CAS  PubMed  Google Scholar 

  • Huang L, Peng L, Yan X (2021) Multi-omics responses of red algae Pyropia haitanensis to intertidal desiccation during low tides. Algal Res 58:102376

    Google Scholar 

  • Hurd TR, Collins Y, Abakumova I, Chouchani ET, Baranowski B, Fearnley IM, Prime TA, Murphy MP, James AM (2012) Inactivation of pyruvate dehydrogenase kinase 2 by mitochondrial reactive oxygen species. J Biol Chem 287:35153–35160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ikawa M (2003) Algal polyunsaturated fatty acids and effects on plankton ecology and other organisms. UNH Cent Freshwat Biol Res 6:17–44

  • Imlay JA (2003) Pathways of oxidative damage. Annu Rev Microbiol 57:395–418

    CAS  PubMed  Google Scholar 

  • Imlay JA, Linn S (1988) DNA damage and oxygen radical toxicity. Science 240:1302–1309

    CAS  PubMed  ADS  Google Scholar 

  • Ishimatsu A, Oda T, Yoshida M, Ozaki M (1996) Oxygen radicals are probably involved in the mortality of yellowtail by Chattonella marina. Fish Sci 62:836–837

    CAS  Google Scholar 

  • Jamers A, Blust R, De Coen W, Griffin JL, Jones OAH (2013) An omics based assessment of cadmium toxicity in the green alga Chlamydomonas reinhardtii. Aquat Toxicol 126:355–364

    CAS  PubMed  Google Scholar 

  • Jamieson D, Chance B, Cadenas E, Boveris A (1986) The relation of free radical production to hyperoxia. Annu Rev Physiol 48:703–719

    CAS  PubMed  Google Scholar 

  • Jeong HJ, Lim AS, Lee K, Lee MJ, Seong KA, Kang NS, Jang SH, Lee KH, Lee SY, Kim MO, Kim JH, Kwon JE, Kang HC, Kim JS, Yih W, Shin K, Jang PK, Ryu J-H, Kim SY, Park JY, Kim KY (2017) Ichthyotoxic Cochlodinium polykrikoides red tides offshore in the South Sea, Korea in 2014: I. Temporal variations in three-dimensional distributions of red-tide organisms and environmental factors. Algae 32:101–130

    CAS  Google Scholar 

  • Juneja A, Ceballos RM, Murthy GS (2013) Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: A review. Energies 6:4607–4638

    Google Scholar 

  • Jüttner F (2001) Liberation of 5,8,11,14,17-eicosapentaenoic acid and other polyunsaturated fatty acids from lipids as a grazer defense reaction in epilithic diatom biofilms. J Phycol 37:744–755

    Google Scholar 

  • Kalyanaraman B, Cheng G, Hardy M, Ouari O, Bennett B, Zielonka J (2018) Teaching the basics of reactive oxygen species and their relevance to cancer biology: Mitochondrial reactive oxygen species detection, redox signaling, and targeted therapies. Redox Biol 15:347–362

    CAS  PubMed  Google Scholar 

  • Kasai S, Shimizu S, Tatara Y, Mimura J, Itoh K (2020) Regulation of Nrf2 by mitochondrial reactive oxygen species in physiology and pathology. Biomolecules 10:320

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kayashima K, Onoue K, Nakagawara A, Minakami S (1980) Superoxide anion-generating activities of macrophages as studied by using cytochalasin E and lectins as synergistic stimulants for superoxide release. Microbiol Immunol 24:449–461

    CAS  PubMed  Google Scholar 

  • Kelly JR, Scheibling RE (2012) Fatty acids as dietary tracers in benthic food webs. Mar Ecol Prog Ser 446:1–22

    CAS  ADS  Google Scholar 

  • Kim D, Nakamura A, Okamoto T, Komatsu N, Oda T, Ishimatsu A, Muramatsu T (1999a) Toxic potential of the raphidophyte Olisthodiscus luteus: Mediation by reactive oxygen species. J Plankton Res 21:1017–1027

    CAS  Google Scholar 

  • Kim CS, Lee SG, Lee CK, Kim HG, Jung J (1999b) Reactive oxygen species as causative agents in the ichthyotoxicity of the red tide dinoflagellate Cochlodinium polykrikoides. J Plankton Res 21:2105–2115

    CAS  Google Scholar 

  • Kim D-I, Matsuyama Y, Nagasoe S, Yamaguchi M, Yoon Y-H, Oshima Y, Imada N, Honjo T (2004) Effects of temperature, salinity and irradiance on the growth of the harmful red tide dinoflagellate Cochlodinium polykrikoides Margalef (Dinophyceae). J Plankton Res 26:61–66

    Google Scholar 

  • Kim D, Nakamura A, Okamoto T, Komatsu N, Oda T, Iida T, Ishimatsu A, Muramatsu T (2000) Mechanism of superoxide anion generation in the toxic red tide phytoplankton Chattonella marina: Possible involvement of NAD(P)H oxidase. Biochim Biophys Acta - Gen Subj 1524:220–227

    CAS  Google Scholar 

  • Kim D, Nakashima T, Matsuyama Y, Niwano Y, Yamaguchi K, Oda T (2007) Presence of the distinct systems responsible for superoxide anion and hydrogen peroxide generation in red tide phytoplankton Chattonella marina and Chattonella ovata. J Plankton Res 29:241–247

    CAS  Google Scholar 

  • Kim D, Oda T, Muramatsu T, Kim D, Matsuyama Y, Honjo T (2002) Possible factors responsible for the toxicity of Cochlodinium polykrikoides, a red tide phytoplankton. Comp Biochem Physiol C 132:415–423

    Google Scholar 

  • Kim D, Wencheng L, Matsuyama Y, Cho K, Yamasaki Y, Takeshita S, Yamaguchi K, Oda T (2019) Extremely high level of reactive oxygen species (ROS) production in a newly isolated strain of the dinoflagellate Karenia mikimotoi. Eur J Phycol 54:632–640

    CAS  Google Scholar 

  • Kim HG (2006) Mitigation and controls of HABs. In: Granéli E, Turner JT (eds) Ecology of harmful algae. Springer, Berlin, pp 327–338

    Google Scholar 

  • Kim HM, Kang JS (2021) Metabolomic studies for the evaluation of toxicity induced by environmental toxicants on model organisms. Metabolites 11:485

    PubMed  PubMed Central  Google Scholar 

  • Kim J, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3:177–185

    PubMed  Google Scholar 

  • Koechler S, Bertin PN, Plewniak F, Baltenweck R, Casiot C, Heipieper HJ, Bouchez O, Arsène-Ploetze F, Hugueney P, Halter D (2016) Arsenite response in Coccomyxa sp. Carn explored by transcriptomic and non-targeted metabolomic approaches. Environ Microbiol 18:1289–1300

    CAS  PubMed  Google Scholar 

  • Kritsiligkou P, Rand JD, Weids AJ, Wang X, Kershaw CJ, Grant CM (2018) Endoplasmic reticulum (ER) stress-induced reactive oxygen species (ROS) are detrimental for the fitness of a thioredoxin reductase mutant. J Biol Chem 293:11984–11995

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuo EY, Yang R-Y, Chin YY, Chien Y-L, Chen YC, Wei C-Y, Kao L-J, Chang Y-H, Li Y-J, Chen T-Y, Lee T-M (2022) Multiomics approaches and genetic engineering of metabolism for improved biorefinery and wastewater treatment in microalgae. Biotechnol J 17:2100603

    CAS  Google Scholar 

  • Kurihara Y, Kanki T, Aoki Y, Hirota Y, Saigusa T, Uchiumi T, Kang D (2012) Mitophagy plays an essential role in reducing mitochondrial production of reactive oxygen species and mutation of mitochondrial DNA by maintaining mitochondrial quantity and quality in yeast. J Biol Chem 287:3265–3272

    CAS  PubMed  Google Scholar 

  • Kussmaul L, Hirst J (2006) The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc Natl Acad Sci 103:7607–7612

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Kustka AB, Shaked Y, Milligan AJ, King DW, Morel FMM (2005) Extracellular production of superoxide by marine diatoms: Contrasting effects on iron redox chemistry and bioavailability. Limnol Oceanogr 50:1172–1180

    CAS  ADS  Google Scholar 

  • Larras F, Billoir E, Scholz S, Tarkka M, Wubet T, Delignette-Muller M-L, Schmitt-Jansen M (2020) A multi-omics concentration-response framework uncovers novel understanding of triclosan effects in the chlorophyte Scenedesmus vacuolatus. J Hazard Mater 397:122727

    CAS  PubMed  Google Scholar 

  • Lauritano C, Andersen JH, Hansen E, Albrigtsen M, Escalera L, Esposito F, Helland K, Hanssen KØ, Romano G, Ianora A (2016) Bioactivity screening of microalgae for antioxidant, anti-inflammatory, anticancer, anti-diabetes, and antibacterial activities. Front Mar Sci 3:68

    Google Scholar 

  • Le HT, Jo H-R, Oh S-Y, Jung J, Kim YG, Kang C, Kim TW (2021) Endoplasmic reticulum targeting reactive oxygen species sensor based on dihydrofluorescein: Application of endoplasmic reticulum stress. Bull Korean Chem Soc 42:279–285

    CAS  Google Scholar 

  • Lesser MP (2006) Oxidative stress in marine environments: Biochemistry and physiological ecology. Annu Rev Physiol 68:253–278

    CAS  PubMed  Google Scholar 

  • Li X, Liu T, Wang K, Waite TD (2015) Light-induced extracellular electron transport by the marine raphidophyte Chattonella marina. Environ Sci Technol 49:1392–1399

    CAS  PubMed  ADS  Google Scholar 

  • Li X, Yan T, Lin J, Yu R, Zhou M (2017) Detrimental impacts of the dinoflagellate Karenia mikimotoi in Fujian coastal waters on typical marine organisms. Harmful Algae 61:1–12

    Google Scholar 

  • Liu W, Au DWT, Anderson DM, Lam PKS, Wu RSS (2007) Effects of nutrients, salinity, pH and light:dark cycle on the production of reactive oxygen species in the alga Chattonella marina. J Exp Mar Biol Ecol 346:76–86

    CAS  Google Scholar 

  • López A, Rico M, Santana-Casiano JM, González AG, González-Dávila M (2015) Phenolic profile of Dunaliella tertiolecta growing under high levels of copper and iron. Environ Sci Pollut Res 22:14820–14828

    Google Scholar 

  • Lum JJ, Bui T, Gruber M, Gordan JD, DeBerardinis RJ, Covello KL, Simon MC, Thompson CB (2007) The transcription factor HIF-1α plays a critical role in the growth factor-dependent regulation of both aerobic and anaerobic glycolysis. Genes Dev 21:1037–1049

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mach J (2015) Phytol from degradation of chlorophyll feeds biosynthesis of tocopherols. Plant Cell 27:2676

    PubMed  PubMed Central  Google Scholar 

  • Mailloux RJ (2020) An update on mitochondrial reactive oxygen species production. Antioxidants 9:472

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mailloux RJ, Gardiner D, O’Brien M (2016) 2-Oxoglutarate dehydrogenase is a more significant source of O2-/H2O2 than pyruvate dehydrogenase in cardiac and liver tissue. Free Radic Biol Med 97:501–512

    CAS  PubMed  Google Scholar 

  • Mardones JI, Dorantes-Aranda JJ, Nichols PD, Hallegraeff GM (2015) Fish gill damage by the dinoflagellate Alexandrium catenella from Chilean fjords: Synergistic action of ROS and PUFA. Harmful Algae 49:40–49

    CAS  Google Scholar 

  • Marí M, Morales A, Colell A, García-Ruiz C, Fernández-Checa JC (2009) Mitochondrial glutathione, a key survival antioxidant. Antioxid Redox Signal 11:2685–2700

    PubMed  PubMed Central  Google Scholar 

  • Marshall J-A, de Salas M, Oda T, Hallegraeff G (2005a) Superoxide production by marine microalgae: I. Survey of 37 species from 6 classes. Mar Biol 147:533–540

    CAS  Google Scholar 

  • Marshall J-A, Hovenden M, Oda T, Hallegraeff GM (2002) Photosynthesis does influence superoxide production in the ichthyotoxic alga Chattonella marina (Raphidophyceae). J Plankton Res 24:1231–1236

    CAS  Google Scholar 

  • Marshall J-A, Ross T, Pyecroft S, Hallegraeff G (2005b) Superoxide production by marine microalgae: II. Towards understanding ecological consequences and possible functions. Mar Biol 147:541–549

    CAS  Google Scholar 

  • Marshall JA, Nichols PD, Hamilton B, Lewis RJ, Hallegraeff GM (2003) Ichthyotoxicity of Chattonella marina (Raphidophyceae) to damselfish (Acanthochromis polycanthus): The synergistic role of reactive oxygen species and free fatty acids. Harmful Algae 2:273–281

    CAS  Google Scholar 

  • Marsico RM, Schneider RJ, Voelker BM, Zhang T, Diaz JM, Hansel CM, Ushijima S (2015) Spatial and temporal variability of widespread dark production and decay of hydrogen peroxide in freshwater. Aquat Sci 77:523–533

    CAS  Google Scholar 

  • Martindale JL, Holbrook NJ (2002) Cellular response to oxidative stress: Signaling for suicide and survival. J Cell Physiol 192:1–15

  • Martínez-Reyes I, Diebold LP, Kong H, Schieber M, Huang H, Hensley CT, Mehta MM, Wang T, Santos JH, Woychik R, Dufour E, Spelbrink JN, Weinberg SE, Zhao Y, DeBerardinis RJ, Chandel NS (2016) TCA cycle and mitochondrial membrane potential are necessary for diverse biological functions. Mol Cell 61:199–209

    PubMed  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: A review. Renew Sustain Energy Rev 14:217–232

    CAS  Google Scholar 

  • Middlemiss JK, Anderson AM, Stratilo CW, Weger HG (2001) Oxygen consumption associated with ferric reductase activity and iron uptake by iron-limited cells of Chlorella kessleri (Chlorophyceae). J Phycol 37:393–399

    CAS  Google Scholar 

  • Milne A, Davey MS, Worsfold PJ, Achterberg EP, Taylor AR (2009) Real-time detection of reactive oxygen species generation by marine phytoplankton using flow injection—chemiluminescence. Limnol Oceanogr Meth 7:706–715

    CAS  Google Scholar 

  • Mittler R (2017) ROS are good. Trends Plant Sci 22:11–19

    CAS  PubMed  Google Scholar 

  • Morris JJ, Rose AL, Lu Z (2022) Reactive oxygen species in the world ocean and their impacts on marine ecosystems. Redox Biol 52:102285

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mulholland MR, Morse R, Egerton T, Bernhardt PW, Filippino KC (2018) Blooms of dinoflagellate mixotrophs in a lower Chesapeake Bay Tributary: Carbon and nitrogen uptake over diurnal, seasonal, and interannual timescales. Estuaries Coasts 41:1744–1765

    CAS  Google Scholar 

  • Mulholland MR, Morse RE, Boneillo GE, Bernhardt PW, Filippino KC, Procise LA, Blanco-Garcia JL, Marshall HG, Egerton TA, Hunley WS, Moore KA, Berry DL, Gobler CJ (2009) Understanding causes and impacts of the dinoflagellate, Cochlodinium polykrikoides, blooms in the Chesapeake Bay. Estuaries Coasts 32:734–747

    CAS  Google Scholar 

  • Mullineaux PM, Exposito-Rodriguez M, Laissue PP, Smirnoff N (2018) ROS-dependent signalling pathways in plants and algae exposed to high light: Comparisons with other eukaryotes. Free Radic Biol Med 122:52–64

    CAS  PubMed  Google Scholar 

  • Murphy MP (2008) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    Google Scholar 

  • Nakamura A, Okamoto T, Komatsu N, Ooka S, Oda T, Ishimatsu A, Muramatsu T (1998) Fish mucus stimurates the generation of superoxide anion by Chattonella marina and Heterosigma akashiwo. Fish Sci 64:866–869

    CAS  Google Scholar 

  • Nguyen MK, Bui VK, Ahn C-Y, Oh H-M, Koh J-S, Moon J-Y, Lee Y-C (2021a) Loading effects of aminoclays in co-culture of two cyanobacterial Microcystis and Anabaena species as an algicidal role. Appl Sci 11:5607

    CAS  Google Scholar 

  • Nguyen MK, Kim M-K, Moon J-Y, Van Tran V, Lee Y-C (2021b) Influence of chitosan-based carbon dots added in MgAC-containing culture medium on green alga Tetraselmis sp. J Appl Phycol 33:765–775

    CAS  Google Scholar 

  • Nguyen MK, Moon J-Y, Bui VKH, Oh Y-K, Lee Y-C (2019) Recent advanced applications of nanomaterials in microalgae biorefinery. Algal Res 41:101522

    Google Scholar 

  • Nguyen MK, Moon J-Y, Lee Y-C (2020a) Microalgal ecotoxicity of nanoparticles: An updated review. Ecotoxicol Environ Saf 201:110781

    CAS  PubMed  Google Scholar 

  • Nguyen MK, Moon J-Y, Lee Y-C (2020b) Loading effects of low doses of magnesium aminoclay on microalgal Microcystis sp. KW growth, macromolecule productions, and cell harvesting. Biomass Bioenergy 139:105619

  • Norton M, Ng AC-H, Baird S, Dumoulin A, Shutt T, Mah N, Andrade-Navarro MA, McBride HM, Screaton RA (2014) ROMO1 is an essential redox-dependent regulator of mitochondrial dynamics. Sci Signal 7:ra10

  • O’Brien M, Chalker J, Slade L, Gardiner D, Mailloux RJ (2017) Protein S-glutathionylation alters superoxide/hydrogen peroxide emission from pyruvate dehydrogenase complex. Free Radic Biol Med 106:302–314

    PubMed  Google Scholar 

  • Oda T, Akaike T, Sato K, Ishimatsu A, Takeshita S, Muramatsu T, Maeda H (1992a) Hydroxyl radical generation by red tide algae. Arch Biochem Biophys 294:38–43

    CAS  PubMed  Google Scholar 

  • Oda T, Ishimatsu A, Shimada M, Takeshita S, Muramatsu T (1992b) Oxygen-radical-mediated toxic effects of the red tide flagellate Chattonella marina on Vibrio alginolyticus. Mar Biol 112:505–509

    CAS  Google Scholar 

  • Oda T, Ishimatsu A, Takeshita S, Muramatsu T (1994) Hydrogen peroxide production by the red-tide flagellate Chattonella marina. Biosci Biotechnol Biochem 58:957–958

    CAS  Google Scholar 

  • Oda T, Moritomi J, Kawano I, Hamaguchi S, Ishimatsu A, Muramatsu T (1995) Catalase- and superoxide dismutase-induced morphological changes and growth inhibition in the red tide phytoplankton Chattonella marina. Biosci Biotechnol Biochem 59:2044–2048

    CAS  Google Scholar 

  • Oda T, Nakamura A, Okamoto T, Ishimatsu A, Muramatsu T (1998) Lectin-induced enhancement of superoxide anion production by red tide phytoplankton. Mar Biol 131:383–390

    CAS  Google Scholar 

  • Oda T, Nakamura A, Shikayama M, Kawano I, Ishimatsu A, Muramatsu T (1997) Generation of reactive oxygen species by raphidophycean phytoplankton. Biosci Biotechnol Biochem 61:1658–1662

    CAS  PubMed  Google Scholar 

  • Okamoto T, Kim D, Oda T, Matsuoka K, Ishimatsu A, Muramatsu T (2000) Concanavalin A-induced discharge of glycocalyx of raphidophycean flagellates, Chattonella marina and Heterosigma akashiwo. Biosci Biotechnol Biochem 64:1767–1770

    CAS  PubMed  Google Scholar 

  • Palenik B, Zafiriou OC, Morel FMM (1987) Hydrogen peroxide production by a marine phytoplankter. Limnol Oceanogr 32:1365–1369

    CAS  ADS  Google Scholar 

  • Papanicolaou KN, Ngoh GA, Dabkowski ER, O’Connell KA, Ribeiro RF, Stanley WC, Walsh K (2011) Cardiomyocyte deletion of mitofusin-1 leads to mitochondrial fragmentation and improves tolerance to ROS-induced mitochondrial dysfunction and cell death. Am J Physiol Circ Physiol 302:H167–H179

    Google Scholar 

  • Park SY, Choi ES, Hwang J, Kim D, Ryu TK, Lee T-K (2009) Physiological and biochemical responses of Prorocentrum minimum to high light stress. Ocean Sci J 44:199–204

    CAS  ADS  Google Scholar 

  • Pascual-Ahuir A, Manzanares-Estreder S, Proft M (2017) Pro- and antioxidant functions of the peroxisome-mitochondria connection and its impact on aging and disease. Oxid Med Cell Longev 2017:9860841

    PubMed  PubMed Central  Google Scholar 

  • Patel R, Rinker L, Peng J, Chilian WM (2017) Reactive oxygen species: The good and the bad. In: Cristiana F, Elena A (eds) Reactive oxygen species (ROS) in living cells. IntechOpen, Rijeka, pp 7–20

  • Pathak J, Rajneesh MPK, Singh SP, Häder D-P, Sinha RP (2018) Cyanobacterial farming for environment friendly sustainable agriculture practices: Innovations and perspectives. Front Environ Sci 6:7

    Google Scholar 

  • Pérez-Pérez ME, Lemaire SD, Crespo JL (2012) Reactive oxygen species and autophagy in plants and algae. Plant Physiol 160:156–164

    PubMed  PubMed Central  Google Scholar 

  • Pikula KS, Zakharenko AM, Aruoja V, Golokhvast KS, Tsatsakis AM (2019) Oxidative stress and its biomarkers in microalgal ecotoxicology. Curr Opin Toxicol 13:8–15

    Google Scholar 

  • Portune KJ, Craig Cary S, Warner ME (2010) Antioxidant enzyme response and reactive oxygen species production in marine raphidophytes. J Phycol 46:1161–1171

    CAS  Google Scholar 

  • Qian L, Qi S, Cao F, Zhang J, Zhao F, Li C, Wang C (2018) Toxic effects of boscalid on the growth, photosynthesis, antioxidant system and metabolism of Chlorella vulgaris. Environ Pollut 242:171–181

    CAS  PubMed  Google Scholar 

  • Quinlan CL, Orr AL, Perevoshchikova IV, Treberg JR, Ackrell BA, Brand MD (2012) Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions. J Biol Chem 287:27255–27264

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quinlan CL, Perevoshchikova IV, Hey-Mogensen M, Orr AL, Brand MD (2013) Sites of reactive oxygen species generation by mitochondria oxidizing different substrates. Redox Biol 1:304–312

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ribas V, García-Ruiz C, Fernández-Checa JC (2014) Glutathione and mitochondria. Front Pharmacol 5:151

    PubMed  PubMed Central  Google Scholar 

  • Richardson B, Corcoran AA (2015) Use of dissolved inorganic and organic phosphorus by axenic and nonaxenic clones of Karenia brevis and Karenia mikimotoi. Harmful Algae 48:30–36

    CAS  PubMed  Google Scholar 

  • Rimessi A, Previati M, Nigro F, Wieckowski MR, Pinton P (2016) Mitochondrial reactive oxygen species and inflammation: Molecular mechanisms, diseases and promising therapies. Int J Biochem Cell Biol 81:281–293

    CAS  PubMed  Google Scholar 

  • Rocchetta I, Mazzuca M, Conforti V, Ruiz L, Balzaretti V, de Molina M del CR (2006) Effect of chromium on the fatty acid composition of two strains of Euglena gracilis. Environ Pollut 141:353–358

  • Roe KL, Barbeau KA (2014) Uptake mechanisms for inorganic iron and ferric citrate in Trichodesmium erythraeum IMS101. Metallomics 6:2042–2051

    CAS  PubMed  Google Scholar 

  • Rose A (2012) The influence of extracellular superoxide on iron redox chemistry and bioavailability to aquatic microorganisms. Front Microbiol 3:124

    PubMed  PubMed Central  Google Scholar 

  • Sandalio LM, Rodríguez-Serrano M, Romero-Puertas MC, del Río LA (2013) Role of peroxisomes as a source of reactive oxygen species (ROS) signaling molecules. In: del Río LA (ed) Peroxisomes and their key role in cellular signaling and metabolism. Springer, Dordrecht, pp 231–255

    Google Scholar 

  • Santos AL, Sinha S, Lindner AB (2018) The good, the bad, and the ugly of ROS: New insights on aging and aging-related diseases from eukaryotic and prokaryotic model organisms. Oxid Med Cell Longev 2018:1941285

    PubMed  PubMed Central  Google Scholar 

  • Schmidt R, Schippers JHMM (2015) ROS-mediated redox signaling during cell differentiation in plants. Biochim Biophys Acta - Gen Subj 1850:1497–1508

    CAS  Google Scholar 

  • Schneider RJ, Roe KL, Hansel CM, Voelker BM (2016) Species-level variability in extracellular production rates of reactive oxygen species by diatoms. Front Chem 4:5

    PubMed  PubMed Central  ADS  Google Scholar 

  • Semenza GL (2011) Hypoxia-inducible factor 1: Regulator of mitochondrial metabolism and mediator of ischemic preconditioning. Biochim Biophys Acta - Mol Cell Res 1813:1263–1268

    CAS  Google Scholar 

  • Sena LA, Chandel NS (2012) Physiological roles of mitochondrial reactive oxygen species. Mol Cell 48:158–167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Serra-Compte A, Corcoll N, Huerta B, Rodríguez-Mozaz S, Sabater S, Barceló D, Álvarez-Muñoz D (2018) Fluvial biofilms exposed to desiccation and pharmaceutical pollution: New insights using metabolomics. Sci Total Environ 618:1382–1388

    CAS  PubMed  ADS  Google Scholar 

  • Shikata T, Takahashi F, Nishide H, Shigenobu S, Kamei Y, Sakamoto S, Yuasa K, Nishiyama Y, Yamasaki Y, Uchiyama I (2019) RNA-Seq analysis reveals genes related to photoreception, nutrient uptake, and toxicity in a noxious red-tide raphidophyte Chattonella antiqua. Front Microbiol 10:1764

    PubMed  PubMed Central  Google Scholar 

  • Shikata T, Yuasa K, Kitatsuji S, Sakamoto S, Akita K, Fujinami Y, Nishiyama Y, Kotake T, Tanaka R, Yamasaki Y (2021) Superoxide production by the red tide-producing Chattonella marina complex (Raphidophyceae) correlates with toxicity to aquacultured fishes. Antioxidants 10:1635

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shimada M, Akagi N, Nakai Y, Goto H, Watanabe M, Watanabe H, Nakanishi M, Yoshimatsu S, Ono C (1991) Free radical production by the red tide alga, Chattonella antiqua. Histochem J 23:361–365

    CAS  PubMed  Google Scholar 

  • Shimada M, Kawamoto S, Nakatsuka Y, Watanabe M (1993) Localization of superoxide anion in the red tide alga Chattonella antiqua. J Histochem Cytochem 41:507–511

    CAS  PubMed  Google Scholar 

  • Siegenthaler KD, Sevier CS (2019) Working together: Redox signaling between the endoplasmic reticulum and mitochondria. Chem Res Toxicol 32:342–344

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sies H, Belousov VV, Chandel NS, Davies MJ, Jones DP, Mann GE, Murphy MP, Yamamoto M, Winterbourn C (2022) Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat Rev Mol Cell Biol 23:499–515

    CAS  PubMed  Google Scholar 

  • Simmons DBD, Benskin JP, Cosgrove JR, Duncker BP, Ekman DR, Martyniuk CJ, Sherry JP (2015) Omics for aquatic ecotoxicology: Control of extraneous variability to enhance the analysis of environmental effects. Environ Toxicol Chem 34:1693–1704

    CAS  PubMed  Google Scholar 

  • Simpson JA, Cheeseman KH, Smith SE, Dean RT (1988) Free-radical generation by copper ions and hydrogen peroxide. Stimulation by Hepes Buffer Biochem J 254:519–523

    CAS  PubMed  Google Scholar 

  • Singh-Mallah G, Nair S, Sandberg M, Mallard C, Hagberg H (2019) The role of mitochondrial and endoplasmic reticulum reactive oxygen species production in models of perinatal brain injury. Antioxid Redox Signal 31:643–663

    CAS  PubMed  PubMed Central  Google Scholar 

  • Solaini G, Baracca A, Lenaz G, Sgarbi G (2010) Hypoxia and mitochondrial oxidative metabolism. Biochim Biophys Acta - Bioenerg 1797:1171–1177

    CAS  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    CAS  PubMed  Google Scholar 

  • Starkov AA, Fiskum G, Chinopoulos C, Lorenzo BJ, Browne SE, Patel MS, Beal MF (2004) Mitochondrial α-ketoglutarate dehydrogenase complex generates reactive oxygen species. J Neurosci 24:7779–7788

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sutherland KM, Wankel SD, Hansel CM (2020) Dark biological superoxide production as a significant flux and sink of marine dissolved oxygen. Proc Natl Acad Sci 117:3433–3439

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Tanaka K, Muto Y, Shimada M (1994) Generation of superoxide anion radicals by the marine phytoplankton organism, Chattonella antiqua. J Plankton Res 16:161–169

    CAS  Google Scholar 

  • Tang BL (2019) Neuroprotection by glucose-6-phosphate dehydrogenase and the pentose phosphate pathway. J Cell Biochem 120:14285–14295

    CAS  PubMed  Google Scholar 

  • Tang YZ, Gobler CJ (2009) Characterization of the toxicity of Cochlodinium polykrikoides isolates from Northeast US estuaries to finfish and shellfish. Harmful Algae 8:454–462

    CAS  Google Scholar 

  • Taylor NS, Weber RJM, Southam AD, Payne TG, Hrydziuszko O, Arvanitis TN, Viant MR (2009) A new approach to toxicity testing in Daphnia magna: Application of high throughput FT-ICR mass spectrometry metabolomics. Metabolomics 5:44–58

    CAS  Google Scholar 

  • Tiew TW-Y, Sheahan MB, Rose RJ (2015) Peroxisomes contribute to reactive oxygen species homeostasis and cell division induction in Arabidopsis protoplasts. Front Plant Sci 6:658

    PubMed  PubMed Central  Google Scholar 

  • Tillmann U, John U, Cembella A (2007) On the allelochemical potency of the marine dinoflagellate Alexandrium ostenfeldii against heterotrophic and autotrophic protists. J Plankton Res 29:527–543

    Google Scholar 

  • Tirichen H, Yaigoub H, Xu W, Wu C, Li R, Li Y (2021) Mitochondrial reactive oxygen species and their contribution in chronic kidney disease progression through oxidative stress. Front Physiol 12:627837

    PubMed  PubMed Central  Google Scholar 

  • Tse G, Yan BP, Chan YWF, Tian XY, Huang Y (2016) Reactive oxygen species, endoplasmic reticulum stress and mitochondrial dysfunction: The link with cardiac arrhythmogenesis. Front Physiol 7:313

    PubMed  PubMed Central  Google Scholar 

  • Twiner MJ, Dixon SJ, Trick CG (2001) Toxic effects of Heterosigma akashiwo do not appear to be mediated by hydrogen peroxide. Limnol Oceanogr 46:1400–1405

    CAS  ADS  Google Scholar 

  • Twiner MJ, Trick CG (2000) Possible physiological mechanisms for production of hydrogen peroxide by the ichthyotoxic flagellate Heterosigma akashiwo. J Plankton Res 22:1961–1975

    CAS  Google Scholar 

  • Vale G, Mehennaoui K, Cambier S, Libralato G, Jomini S, Domingos RF (2016) Manufactured nanoparticles in the aquatic environment-biochemical responses on freshwater organisms: A critical overview. Aquat Toxicol 170:162–174

    CAS  PubMed  Google Scholar 

  • Vianello A, Macri F (1991) Generation of superoxide anion and hydrogen peroxide at the surface of plant cells. J Bioenerg Biomembr 23:409–423

    CAS  PubMed  Google Scholar 

  • Wanders RJA, Waterham HR (2006) Biochemistry of mammalian peroxisomes revisited. Annu Rev Biochem 75:295–332

    CAS  PubMed  Google Scholar 

  • Yamaoka Y, Choi BY, Kim H, Shin S, Kim Y, Jang S, Song W-Y, Cho CH, Yoon HS, Kohno K, Lee Y (2018) Identification and functional study of the endoplasmic reticulum stress sensor IRE1 in Chlamydomonas reinhardtii. Plant J 94:91–104

    CAS  PubMed  Google Scholar 

  • Yamasaki Y, Hirayama R, Yamamoto A, Yuasa K, Shikata T (2022) Effects of micronutrients on the detection of extracellular superoxide produced by the harmful raphidophyte Chattonella antiqua in culture. J Plankton Res 44:36–47

    CAS  Google Scholar 

  • Yokote M, Honjo T (1985) Morphological and histochemical demonstration of a glycocalyx on the cell surface of Chattonella antiqua, a ‘naked flagellate.’ Experientia 41:1143–1145

    CAS  Google Scholar 

  • Yong W-K, Sim K-S, Poong S-W, Wei D, Phang S-M, Lim P-E (2018) Interactive effects of temperature and copper toxicity on photosynthetic efficiency and metabolic plasticity in Scenedesmus quadricauda (Chlorophyceae). J Appl Phycol 30:3029–3041

    CAS  Google Scholar 

  • Yu Z, Song X, Cao X, Liu Y (2017) Mitigation of harmful algal blooms using modified clays: Theory, mechanisms, and applications. Harmful Algae 69:48–64

    PubMed  Google Scholar 

  • Yuasa K, Shikata T, Ichikawa T, Tamura Y, Nishiyama Y (2020a) Nutrient deficiency stimulates the production of superoxide in the noxious red-tide-forming raphidophyte Chattonella antiqua. Harmful Algae 99:101938

    CAS  PubMed  Google Scholar 

  • Yuasa K, Shikata T, Kitatsuji S, Yamasaki Y, Nishiyama Y (2020b) Extracellular secretion of superoxide is regulated by photosynthetic electron transport in the noxious red-tide-forming raphidophyte Chattonella antiqua. J Photochem Photobiol B 205:111839

    CAS  PubMed  Google Scholar 

  • Yue J, Du C, Ji J, Xie T, Chen W, Chang E, Chen L, Jiang Z, Shi S (2018) Inhibition of α-ketoglutarate dehydrogenase activity affects adventitious root growth in poplar via changes in GABA shunt. Planta 248:963–979

    CAS  PubMed  Google Scholar 

  • Zandi P, Schnug E (2022) Reactive oxygen species, antioxidant responses and implications from a microbial modulation perspective. Biology (basel) 11:155

    CAS  PubMed  Google Scholar 

  • Zeeshan HM, Lee GH, Kim H-R, Chae H-J (2016) Endoplasmic reticulum stress and associated ROS. Int J Mol Sci 17:327

    PubMed  PubMed Central  Google Scholar 

  • Zhang C, Syed TW, Liu R, Yu J (2017) Role of endoplasmic reticulum stress, autophagy, and inflammation in cardiovascular disease. Front Cardiovasc Med 4:29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, Gonzalez FJ, Semenza GL (2008) Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283:10892–10903

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang T, Diaz JM, Brighi C, Parsons RJ, McNally S, Apprill A, Hansel CM (2016) Dark production of extracellular superoxide by the coral Porites astreoides and representative symbionts. Front Mar Sci 3:232

    Google Scholar 

  • Zhang W, Tan NGJ, Fu B, Li SFY (2015) Metallomics and NMR-based metabolomics of Chlorella sp. reveal the synergistic role of copper and cadmium in multi-metal toxicity and oxidative stress. Metallomics 7:426–438

    CAS  PubMed  Google Scholar 

  • Zhang W, Tan NGJ, Li SFY (2014) NMR-based metabolomics and LC-MS/MS quantification reveal metal-specific tolerance and redox homeostasis in Chlorella vulgaris. Mol Biosyst 10:149–160

    CAS  PubMed  Google Scholar 

  • Zohdi E, Abbaspour M (2019) Harmful algal blooms (red tide): A review of causes, impacts and approaches to monitoring and prediction. Int J Environ Sci Technol 16:1789–1806

    Google Scholar 

Download references

Funding

This work was supported by research fund of Chungnam National University.

Author information

Authors and Affiliations

Authors

Contributions

M.K.N.: Conceptualization, Methodology, Validation, Investigation, Formal analysis, and Writing—original draft. M.K.N.; H.-M.K.: Writing—review & editing. M.K.N.: Visualization. H.-M.K.: Supervision. M.K.N.; H.-M.K.: Final approval of manuscript.

Corresponding author

Correspondence to Hyung Min Kim.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, M.K., Kim, H.M. A review of the representative microalgal-derived reactive oxygen species: Possible formation, ecophysiological implications, and metabolomic-based evaluations. J Appl Phycol 36, 129–154 (2024). https://doi.org/10.1007/s10811-023-03132-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-023-03132-7

Keywords

Navigation