Skip to main content

Advertisement

Log in

Total polyphenol content of tropical marine and coastal flora: Potentials for food and nutraceutical applications

  • Research
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The marine environment is abundant in natural products that are beneficial to humans. Among these compounds are the polyphenols produced by marine flora as secondary metabolites and used as a defense against stressful environmental conditions. Accordingly, recent pharmacological and biomedical studies showed that polyphenols from marine and coastal floras have several important bioactivities including antioxidant property. In this study, we measured the total polyphenol content (TPC) of 75 species of marine-associated flora. The TPC of their methanolic extracts was measured spectrophotometrically using the Folin-Ciocalteu assay and was expressed both as mg phloroglucinol equivalent per g of dry weight (mg PGE g−1 DW) and as mg gallic acid equivalent per g dry weight (mg GAE g−1 DW). The TPC values are higher when expressed in terms of GAE compared to PGE. Also, the mean TPC of tracheopytes (229 ± 43.0 mg PGE g−1 DW) was higher compared to the mean TPC of macroalgae (69.4 ± 9.59 mg PGE g−1 DW). For macroalgae, ochrophytes (97.9 ± 22.7 mg PGE g−1 DW) had the highest mean TPC followed by chlorophytes (80.0 ± 20.5 mg PGE g−1 DW) and rhodophytes (49.5 ± 8.60 mg PGE g−1 DW). Moreover, our study also showed that TPC varied between young and mature tissues, among different color morphotypes and different parts of the plants. Although the concentrations of total polyphenols varied among species, ages, strains and parts of the plant, our study showed that marine and coastal floras are rich sources of polyphenols that could be further examined for their biological activities and other applications in food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Adharini RI, Setyawan AR, Suadi, Jayanti AD (2020) Comparison of nutritional composition in red and green strains of Kappaphycus alvarezii cultivated in Gorontalo Province, Indonesia. E3S Web Conf 147:03029

  • Admassu H, Gasmalla MAA, Yang R, Zhao W (2018) Identification of bioactive peptides with α-Amylase inhibitory potential from enzymatic protein hydrolysates of red seaweed (Porphyra spp). J Agric Food Chem 66:4872–4882

    Article  CAS  PubMed  Google Scholar 

  • Aguirre-von-Wobeser E, Figueroa FL, Cabello-Pasini A (2001) Photosynthesis and growth of red and green morphotypes of Kappaphycus alvarezii (Rhodophyta) from the Philippines. Mar Biol 138:679–686

    Article  CAS  Google Scholar 

  • Álvarez-Gómez F, Bouzon ZL, Korbee N, Celis-Pla P, Schmidt EC, Figueroa FL (2017) Combined effects of UVR and nutrients on cell ultrastructure, photosynthesis and biochemistry in Gracilariopsis longissima (Gracilariales, Rhodophyta). Algal Res 26:190–202

    Article  Google Scholar 

  • Anwar H, Hussain G, Mustafa I (2018) Antioxidants from natural sources. In: Shalaby E, Azzam GM (eds) Antioxidants in Foods and Its Applications. InTech, London, pp 1–17

    Google Scholar 

  • Apostolidis E, Karayannakidis PD, Kwon YI, Lee CM, Seeram NP (2011) Seasonal variation of phenolic antioxidant-mediated α-glucosidase inhibition of Ascophyllum nodosum. Plant Foods Hum Nutr 66:313–319

  • Araújo PG, Nardelli AE, Fujii MT, Chow F (2020) Antioxidant properties of different strains of Kappaphycus alvarezii (Rhodophyta) farmed on the Brazilian coast. Phycologia 59:272–279

    Article  Google Scholar 

  • Arrontes J (1990) Composition, distribution on host, and seasonality of epiphytes on three intertidal algae. Bot Mar 33:205–211

  • Artan M, Li Y, Karadeniz F, Lee SH, Kim MM, Kim SK (2008) Anti-HIV-1 activity of phloroglucinol derivative, 6,6′-bieckol, from Ecklonia cava. Bioorg Med Chem 16:7921–7926

    Article  CAS  PubMed  Google Scholar 

  • Arunkumar M, Gunaseelan S, Kubendran Aravind M, Mohankumar V, Anupam P, Harikrishnan M, Siva A, Ashokkumar B, Varalakshmi P (2022) Marine algal antagonists targeting 3CL protease and spike glycoprotein of SARS-CoV-2: a computational approach for anti-COVID-19 drug discovery. J Biomol Struct Dyn 40:8961–8988

    Article  CAS  PubMed  Google Scholar 

  • Ask EI, Azanza RV (2002) Advances in cultivation technology of commercial eucheumatoid species: A review with suggestions for future research. Aquaculture 206:257–277

    Article  Google Scholar 

  • Banerjee D, Chakrabarti S, Hazra A, Banerjee S, Ray J, Mukherjee B (2008) Antioxidant activity and total phenolics of some mangroves in Sundarbans. Afr J Biotechnol 7:7

    Google Scholar 

  • Benita M, Dubinsky Z, Iluz D (2018) Padina pavonica: Morphology and calcification functions and mechanism. Am J Plant Sci 9:1156–1168

    Article  CAS  Google Scholar 

  • Benslima A, Sellimi S, Hamdi M, Nasri R, Jridi M, Cot D, Li S, Nasri M, Zouari N (2021) The brown seaweed Cystoseira schiffneri as a source of sodium alginate: Chemical and structural characterization, and antioxidant activities. Food Biosci 40:100873

  • Bogolitsyn K, Dobrodeeva L, Druzhinina A, Ovchinnikov D, Parshina A, Shulgina E (2019) Biological activity of a polyphenolic complex of Arctic brown algae. J Appl Phycol 31:3341–3348

    Article  CAS  Google Scholar 

  • Borowitzka MA, Larkum AWD (1976) Calcification in the green alga Halimeda: II. The exchange of Ca2+ and the occurence of age gradients in calcification and photosynthesis. J Exp Bot 27:864–878

    Article  CAS  Google Scholar 

  • Borowitzka MA, Larkum AWD (1977) Calcification in the green alga Halimeda. I. An ultrastructure study of thallus development. J Phycol 13:6–16

    Article  Google Scholar 

  • Bravo L (2009) Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutri Rev 56:317–333

    Article  Google Scholar 

  • Cherry P, O’Hara C, Magee PJ, McSorley EM, Allsopp PJ (2019) Risks and benefits of consuming edible seaweeds. Nutr Rev 77:307–329

    Article  PubMed  PubMed Central  Google Scholar 

  • Chowdhury MTH, Bangoura I, Kang J-Y, Park NG, Ahn DH, Hong Y-K (2011) Distribution of phlorotannins in the brown alga Ecklonia cava and comparison of pretreatments for extraction. Fish Aquat Sci 14:198–204

    CAS  Google Scholar 

  • Close DC, McArthur C (2002) Rethinking the role of many plant phenolics - protection from photodamage not herbivores? Oikos 99:166–172

    Article  CAS  Google Scholar 

  • Cotas J, Leandro A, Monteiro P, Pacheco D, Figueirinha A, Gonçalves AMM, da Silva GJ, Pereira L (2020) Seaweed phenolics: From extraction to applications. Mar Drugs 18:384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Da Silva RP, Kawai GSD, Andrade FRDD, Bezzon VDN, Ferraz HG (2021) Characterisation and traceability of calcium carbonate from the seaweed Lithothamnium calcareum. Solids 2:192–211

    Article  Google Scholar 

  • Davy SK, Trautman DA, Borowitzka MA, Hinde R (2002) Ammonium excretion by a symbiotic sponge supplies the nitrogen requirements of its rhodophyte partner. J Exp Biol 205:3505–3511

    Article  CAS  PubMed  Google Scholar 

  • Duffy JE, Hay ME (1990) Seaweed adaptations to herbivory. Bioscience 40:368–375

    Article  Google Scholar 

  • Dumilag RV (2018) Unmasking a cryptic ethnotaxon: A case study on the identity of Dermonema virens (Nemaliales, Rhodophyta) in the Philippines. Webbia 73:89–96

    Article  Google Scholar 

  • Dumilag RV, Belgica THR, Mendoza LC, Hibay JM, Arevalo AE Jr, Malto MAD, Orgela EG, Longavela MR, Corral LEH, Olipany RD, Ruiz CFC, Mintu CB, Laza BO, Pablo MHS, Bailon JD, Berdin LD, Calaminos FP, Gregory SA, Omoto AT, Chua VL, Liao LM (2022) Seaweed ethnobotany of eastern Sorsogon, Philippines. Algae 37:227–237

    Article  Google Scholar 

  • Farvin KHS, Surendraraj A, Al-Ghunaim A, Al-Yamani F (2019) Chemical profile and antioxidant activities of 26 selected species of seaweeds from Kuwait coast. J Appl Phycol 31:2653–2668

    Article  CAS  Google Scholar 

  • Fayaz M, Namitha KK, Murthy KNC, Swamy MM, Sarada S, Khanam S, Subbarao PV, Ravishankar GA (2005) Chemical Composition, Iron Bioavailability, and Antioxidant Activity of Kappaphycus alvarezzi (Doty). J Agric Food Chem 53:792–797

    Article  CAS  PubMed  Google Scholar 

  • Feduraev P, Chupakhina G, Maslennikov P, Tacenko N, Skrypnik L (2019) Variation in phenolic compounds content and antioxidant activity of different plant organs from Rumex crispus L. and Rumex obtusifolius L. at different growth stages. Antioxidants 8:237

  • Ford L, Theodoridou K, Sheldrake GN, Walsh PJ (2019) A critical review of analytical methods used for the chemical characterisation and quantification of phlorotannin compounds in brown seaweeds. Phytochem Anal 30:587–599

    Article  CAS  Google Scholar 

  • Freile-Pelegrín Y, Robledo D (2013) Bioactive phenolic compounds from algae. In: Hernández-Ledesma B, Herrero M (eds) Bioactive Compounds from Marine Foods. John Wiley & Sons Ltd, Chichester, pp 113–129

    Chapter  Google Scholar 

  • Generalić Mekinić I, Skroza D, Šimat V, Hamed I, Čagalj M, Popović Perković Z (2019) Phenolic content of brown algae (Pheophyceae) species: Extraction, identification, and quantification. Biomolecules 9:244

    Article  PubMed  PubMed Central  Google Scholar 

  • Gómez-Guzmán M, Rodríguez-Nogales A, Algieri F, Gálvez J (2018) Potential role of seaweed polyphenols in cardiovascular-associated disorders. Mar Drugs 16:250

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonçalves FMB, Ramos AC, Mathias MdaS, Sales QdeS, Ramos CC, Antunes F, De Oliveira RR (2020) Phytochemical analysis and hypotensive activity of Ipomoea pes-caprae on blood pressure of normotensive rats. Rodriguésia 71:e01122019

  • Guiry MD, Guiry GM (2021) AlgaeBase. In: AlgaeBase. https://www.algaebase.org/about/?tc=accept&undefined. Accessed 22 Jun 2021

  • Hay ME, Paul VJ, Lewis SM, Gustafson K, Tucker J, Trindell RN (1988) Can tropical seaweeds reduce herbivory by growing at night? Diel patterns of growth, nitrogen content, herbivory, and chemical versus morphological defenses. Oecologia 75:233–245

    Article  PubMed  Google Scholar 

  • Imbs TI, Zvyagintseva TN (2018) Phlorotannins are polyphenolic metabolites of brown algae. Russ J Mar Biol 44:263–273

    Article  CAS  Google Scholar 

  • Indriatmoko H, Limantara L, Brotosudarmo THP (2015) Composition of photosynthetic pigments in a red alga Kappaphycus alvarezi cultivated in different depths. Procedia Chemistry 14:193–201

    Article  CAS  Google Scholar 

  • Jiménez-Escrig A, Gómez-Ordóñez E, Rupérez P (2012) Brown and red seaweeds as potential sources of antioxidant nutraceuticals. J Appl Phycol 24:1123–1132

    Article  Google Scholar 

  • Kahl R, Kappus H (1993) Toxicology of the synthetic antioxidants BHA and BHT in comparison with the natural antioxidant vitamin E. Z Lebensm Unters Forsch 196:329–338

    Article  CAS  PubMed  Google Scholar 

  • Kang J-H, Lee H-A, Kim H-J, Han J-S (2017) Gelidium amansii extract ameliorates obesity by down-regulating adipogenic transcription factors in diet-induced obese mice. Nutr Res Pract 11:17

    Article  CAS  PubMed  Google Scholar 

  • Kirke DA, Rai DK, Smyth TJ, Stengel DB (2019) An assessment of temporal variation in the low molecular weight phlorotannin profiles in four intertidal brown macroalgae. Algal Res 41:101550

  • Kobayashi H, Oikawa S, Hirakawa K, Kawanishi S (2004) Metal-mediated oxidative damage to cellular and isolated DNA by gallic acid, a metabolite of antioxidant propyl gallate. Mutat Res 558:111–120

    Article  CAS  PubMed  Google Scholar 

  • Kurutas EB (2015) The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr J 15:71

    Article  Google Scholar 

  • Landa-Cansigno C, Hernández-Domínguez EE, Monribot-Villanueva JL, Licea-Navarro AF, Mateo-Cid LE, Segura-Cabrera A, Guerrero-Analco JA (2020) Screening of Mexican tropical seaweeds as sources of α-amylase and α-glucosidase inhibitors. Algal Res 49:101954

  • Lee SH, Park MH, Heo SJ, Kang SM, Ko SC, Han JS, Jeon YJ (2010) Dieckol isolated from Ecklonia cava inhibits α-glucosidase and α-amylase in vitro and alleviates postprandial hyperglycemia in streptozotocin-induced diabetic mice. Food Chem Toxicol 48:2633–2637

    Article  CAS  PubMed  Google Scholar 

  • Li Y-X, Wijesekara I, Li Y, Kim S-K (2011) Phlorotannins as bioactive agents from brown algae. Process Biochem 46:2219–2224

    Article  CAS  Google Scholar 

  • Lin YM, Liu JW, Xiang P, Lin P, Ding ZH, LdaSL S (2007) Tannins and nitrogen dynamics in mangrove leaves at different age and decay stages (Jiulong River Estuary, China). Hydrobiologia 583:285–295

    Article  CAS  Google Scholar 

  • Liu S, Dai H, Konuklugil B, Orfali RS, Lin W, Kalscheuer R, Liu Z, Proksch P (2016) Phenolic bisabolanes from the sponge-derived fungus Aspergillus sp. Phytochem Lett 18:187–191

    Article  Google Scholar 

  • Lomartire S, Marques JC, Gonçalves AMM (2021) An overview to the health benefits of seaweeds consumption. Mar Drugs 19:341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopes G, Sousa C, Valentão P, Andrade PB (2013) Sterols in algae and health. In: Hernández-Ledesma B, Herrero M (eds) Bioactive Compounds from Marine Foods. John Wiley & Sons Ltd, Chichester, pp 173–191

    Chapter  Google Scholar 

  • Lourenço SC, Moldão-Martins M, Alves VD (2019) Antioxidants of natural plant origins: From sources to food industry applications. Molecules 24:4132

    Article  PubMed  PubMed Central  Google Scholar 

  • Mabeau S, Fleurence J (1993) Seaweed in food products: Biochemical and nutritional aspects. Trends Food Sci Technol 4:103–107

    Article  CAS  Google Scholar 

  • Malick CP, Singh MB (1980) Estimation of polyphenols. In: Malick CP, Singh MB (eds) Plant enzymology and histo-enzymology: A Text Manual. Kalyani Publishers, New Delhi, p 286

    Google Scholar 

  • Mannino AM, Micheli C (2020) Ecological function of phenolic compounds from Mediterranean fucoid algae and seagrasses: An overview on the genus Cystoseira sensu lato and Posidonia oceanica (L.) Delile. J Mar Sci Eng 8:19

  • Marzag H, Warnault P, Bougrin K, Martinet N, Benhida R (2014) Natural polyphenols as potent inhibitors of DNA methyltransferases. Stud Nat Prod Chem 41:195–223

    Article  CAS  Google Scholar 

  • Medaković D, Popović S, Zavodnik N, Gržeta B, Plazonic M (1995) X-ray diffraction study of mineral components in calcareous algae (Corallinaceae, Rhodophyta). Mar Biol 122:479–485

    Article  Google Scholar 

  • Mehany T, Khalifa I, Barakat H, Althwab SA, Alharbi YM, El-Sohaimy S (2021) Polyphenols as promising biologically active substances for preventing SARS-CoV-2: A review with research evidence and underlying mechanisms. Food Biosci 40:100891

  • Meñez EG, Phillips RC, Calumpong HP (1983) Seagrasses from the Philippines. Smithsonian Contrib Mar Sci 21:1–40

    Google Scholar 

  • Nabil-Adam A, Shreadah MA, Abd El Moneam NM, El-Assar SA (2019) Pesudomance sp. bacteria associated with marine sponge as a promising and sustainable source of bioactive molecules. Curr Pharm Biotechnol 20:964–984

    Article  CAS  PubMed  Google Scholar 

  • Namvar F, Mohamed S, Fard SG, Behravan J, Mustapha NM, Alitheen NBM, Othman F (2012) Polyphenol-rich seaweed (Eucheuma cottonii) extract suppresses breast tumour via hormone modulation and apoptosis induction. Food Chem 130:376–382

    Article  CAS  Google Scholar 

  • Naveen J, Baskaran R, Baskaran V (2021) Profiling of bioactives and in vitro evaluation of antioxidant and antidiabetic property of polyphenols of marine algae Padina tetrastromatica. Algal Res 55:102250

  • Okazaki M, Pentecost A, Tanaka Y, Miyata M (1986) A study of calcium carbonate deposition in the genus Padina (Phaeophyceae, Dictyotales). Br Phycol J 21:217–224

    Article  Google Scholar 

  • Pal Singh I, Bharate SB (2006) Phloroglucinol compounds of natural origin. Nat Prod Rep 23:558

    Article  PubMed  Google Scholar 

  • Palaniappan N, Balasubramanian B, Arunkumar M, Pushparaj K, Rengasamy KRR, Maluventhen V, Pitchai M, Alanazi J, Liu W-C, Maruthupandian A (2022) Anticancer, antioxidant, and antimicrobial properties of solvent extract of Lobophora variegata through in vitro and in silico studies with major phytoconstituents. Food Biosci 48:101822

  • Papenbrock J (2012) Highlights in seagrasses’ phylogeny, physiology, and metabolism: What makes them special? Int Schol Res Not 2012:103892

    Google Scholar 

  • Parke DV, Lewis DFV (1992) Safety aspects of food preservatives. Food Addit Contam 9:561–577

    Article  CAS  PubMed  Google Scholar 

  • Pavia H, Cervin G, Lindgren A, Åberg P (1997) Effects of UV-B radiation and simulated herbivory on phlorotannins in the brown alga Ascophyllum nodosum. Mar Ecol Prog Ser 157:139–146

    Article  CAS  Google Scholar 

  • Piccolella S, Pacifico S (2015) Plant-derived polyphenols. Adv Mol Toxicol 9:161–214

    Article  CAS  Google Scholar 

  • Pliego-Cortés H, Bedoux G, Boulho R, Taupin L, Freile-Pelegrin Y, Bourgougnon N, Robledo D (2019) Stress tolerance and photoadaptation to solar radiation in Rhodymenia pseudopalmata (Rhodophyta) through mycosporine-like amino acids, phenolic compounds, and pigments in an Integrated Multi-Trophic Aquaculture system. Algal Res 41:101542

  • Potin P (2012) Intimate Associations between epiphytes, endophytes, and parasites of seaweeds. In: Wiencke C, Bischof K (eds) Seaweed Biology. Springer, Berlin, pp 203–234

    Chapter  Google Scholar 

  • Prabhu VV, Guruvayoorappan C (2012) Anti-inflammatory and anti-tumor activity of the marine mangrove Rhizophora apiculata. J Immunotoxicol 9:341–352

    Article  CAS  PubMed  Google Scholar 

  • Price IR, Friker RL, Wilkinson CR (1984) Ceratodictyon spongiosum (Rhodophyta), the macroalgal partner in an alga-sponge symbiosis, grown in unialgal culture. J Phycol 20:156–158

    Article  Google Scholar 

  • Primavera JH, Sadaba RB, Lebata MJHL, Altamirano JP (2004) Handbook of mangroves in the Philippines: Panay.  Tigbauan, Iloilo, Aquaculture Department, Southeast Asian Fisheries Development Center

  • Rawiwan P, Peng Y, Paramayuda IGPB, Quek SY (2022) Red seaweed: A promising alternative protein source for global food sustainability. Trends Food Sci Technol 123:37–56

    Article  CAS  Google Scholar 

  • Rezayian M, Niknam V, Ebrahimzadeh H (2019) Oxidative damage and antioxidative system in algae. Toxicol Rep 6:1309–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roleda MY, Clayton MN, Wiencke C (2006) Screening capacity of UV-absorbing compounds in spores of Arctic Laminariales. J Exp Mar Biol Ecol 338:123–133

    Article  CAS  Google Scholar 

  • Roleda MY, Heesch S (2021) Chemical profiling of Ulva species for food applications: What is in a name? Food Chem 361:130084

  • Roleda MY, Marfaing H, Desnica N, Jónsdóttir R, Skjermo J, Rebours C, Nitschke U (2019) Variations in polyphenol and heavy metal contents of wild-harvested and cultivated seaweed bulk biomass: Health risk assessment and implication for food applications. Food Control 95:121–134

    Article  CAS  Google Scholar 

  • Saad B, Sing YY, Nawi MA, Hashim N, Mohamed Ali AS, Saleh MI, Sulaiman SF, Talib KM, Ahmad K (2007) Determination of synthetic phenolic antioxidants in food items using reversed-phase HPLC. Food Chem 105:389–394

    Article  CAS  Google Scholar 

  • Schneider G, Figueroa FL, Vega J, Chaves P, Alvarez-Gomez F, Korbee N, Bobomi-Barifi J (2020) Photoprotection properties of marine photosynthetic organisms grown in high ultraviolet exposure areas: Cosmeceutical applications. Algal Res 49:101956

  • Schoenwaelder MEA (2002) The occurrence and cellular significance of physodes in brown algae. Phycologia 41:125–139

    Article  Google Scholar 

  • Scodelaro Bilbao PG, Damiani C, Salvador GA, Leonardi P (2016) Haematococcus pluvialis as a source of fatty acids and phytosterols: potential nutritional and biological implications. J Appl Phycol 28:3283–3294

    Article  CAS  Google Scholar 

  • Sharma BR, Rhyu DY (2014) Anti-diabetic effects of Caulerpa lentillifera: Stimulation of insulin secretion in pancreatic β-cells and enhancement of glucose uptake in adipocytes. Asian Pac J Trop Biomed 4:575–580

  • Shibata T, Fujimoto K, Nagayama K, Yamagicji K, Nakamura T (2002) Inhibitory activity of brown algal phlorotannins against hyaluronidase. Int J Food Sci Tech 37:703–709

    Article  CAS  Google Scholar 

  • Shrestha S, Zhang W, Smid SD (2021) Phlorotannins: A review on biosynthesis, chemistry and bioactivity. Food Bioscience 39:100832

  • Steinberg PD (1984) Algal chemical defense against herbivores: Allocation of phenolic compounds in the kelp Alaria marginata. Science 223:405–407

    Article  CAS  PubMed  Google Scholar 

  • Suetsuna K, Nakano T (2000) Identification of an antihypertensive peptide from peptic digest of wakame (Undaria pinnatifida). J Nutr Biochem 11:450–454

    Article  CAS  PubMed  Google Scholar 

  • Swanson AK, Druehl LD (2002) Induction, exudation and the UV protective role of kelp phlorotannins. Aquat Bot 73:241–253

    Article  CAS  Google Scholar 

  • Takarina ND, Patria MP (2017) Content of polyphenol compound in mangrove and macroalga extracts. AIP Conf Proc 1862:030100

    Article  Google Scholar 

  • Tanna B, Mishra A (2019) Nutraceutical potential of seaweed polysaccharides: Structure, bioactivity, safety, and toxicity. Compr Rev Food Sci Food Saf 18:817–831

    Article  PubMed  Google Scholar 

  • Tanna B, Mishra A (2018) Metabolites unravel nutraceutical potential of edible seaweeds: An emerging source of functional food. Compr Rev Food Sci Food Saf 17:1613–1624

    Article  PubMed  Google Scholar 

  • Targett NM, Arnold TM (1998) Predicting the effects of brown agal phlorotannins on marine herbivores in tropical and temperate oceans. J Phycol 34:195–205

    Article  CAS  Google Scholar 

  • Teas J, Vena S, Cone DL, Irhimeh M (2013) The consumption of seaweed as a protective factor in the etiology of breast cancer: proof of principle. J Appl Phycol 25:771–779

    Article  CAS  PubMed  Google Scholar 

  • Toth G, Pavia H (2000) Lack of phlorotannin induction in the brown seaweed Ascophyllum nodosum in response to increased copper concentrations. Mar Ecol Prog Ser 192:119–126

    Article  CAS  Google Scholar 

  • Trono GC (1997) Field Guide & Atlas of the Seaweed Resources of the Philippines. Bookmark Inc, Makati City, Philippines

    Google Scholar 

  • Trono GC, Ganzon-Fortes E (1988) Philippine Seaweeds. National Bookstore Inc, Manila City, Philippines

    Google Scholar 

  • Van Alstyne KL (1989) Adventitious branching as a herbivore-induced defense in the intertidal brown alga Fucus distichus. Mar Ecol Prog Ser 56:169–176

    Article  Google Scholar 

  • Van Alstyne KL, Paul VJ (1990) The biogeography of polyphenolic compounds in marine macroalgae: temperate brown algal defenses deter feeding by tropical herbivorous fishes. Oecologia 84:158–163

    Article  PubMed  Google Scholar 

  • Venkatesan J, Lowe B, Anil S, Manivasagan P, Al Kheraif AA, Kang K-H, Kim S-K (2015) Seaweed polysaccharides and their potential biomedical applications: Seaweed polysaccharides and their potential biomedical applications. Starch - Stärke 67:381–390

    Article  CAS  Google Scholar 

  • Wang JF, Qin X, Xu FQ, Zhang T, Liao S, Lin X, Yang B, Liu J, Wang L, Tu Z, Liu Y (2015) Tetramic acid derivatives and polyphenols from sponge-derived fungus and their biological evaluation. Nat Prod Res 29:1761–1765

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Jónsdóttir R, Liu H, Gu L, Kristinsson HG, Raghavan S, Olafsdóttir G (2012) Antioxidant capacities of phlorotannins extracted from the brown algae Fucus vesiculosus. J Agric Food Chem 60:5874–5883

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Jónsdóttir R, Ólafsdóttir G (2009) Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chem 116:240–248

    Article  CAS  Google Scholar 

  • Wang Y, Zhu H, Tam NFY (2014) Polyphenols, tannins and antioxidant activities of eight true mangrove plant species in South China. Plant Soil 374:549–563

    Article  CAS  Google Scholar 

  • Xiu-Qin L, Chao J, Yan-Yan S, Min-Li Y, Xiao-Gang C (2009) Analysis of synthetic antioxidants and preservatives in edible vegetable oil by HPLC/TOF-MS. Food Chem 113:692–700

    Article  Google Scholar 

  • Yang Y, Hassan SHA, Awasthi MK, Gajendran B, Shrma M, Ji M-K, Salama E-S (2022) The recent progress on the bioactive compounds from algal biomass for human health applications. Food Biosci 51:102267

  • Zapata O, McMillan C (1979) Phenolic acids in seagrasses. Aquat Bot 7:307–317

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This is contribution no. 498 from the Marine Science Institute, University of the Philippines (UPMSI), Diliman. We, the Algal Ecophysiology (AlgaE) team, are thankful to our laboratory aides Jerry Arboleda and Guillermo Valenzuela and to our institute driver Wilfredo de Guzman for their help in the collection and processing of our samples. We are also thankful to the Bolinao Marine Laboratory (BML) for providing us a venue to analyze our samples.

Funding

This study was subsidized by the UPMSI inhouse research grant, the DOST-PCAARRD funded project “Resource Inventory, Valuation and Policy in Ecosystem Services under Threat: the case of the West Philippine Sea (REINVEST-WPS)” and the CHED-LAKAS funded project “Phytochemical Characterization of Macroalgae for Food and High Value Products (PhycoPRO).

Author information

Authors and Affiliations

Authors

Contributions

BCV Narvarte: Methodology, Investigation, Data Curation, Formal Analysis, Validation, Visualization, Writing- Original Draft.

LAR Hinaloc: Investigation, Visualization, Writing- Review & Editing.

TGT Genovia, SMC Gonzaga, AMT Tabonda-Nabor, FMR Palecpec: Investigation, Writing- Review & Editing.

HM Dayao: Investigation.

MY Roleda: Funding acquisition, Project administration, Supervision, Conceptualization, Methodology, Investigation, Validation, Resources, Writing- Review & Editing.

Corresponding author

Correspondence to Bienson Ceasar V. Narvarte.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare that they have no potential conflicts of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6463 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narvarte, B.C.V., Genovia, T.G.T., Hinaloc, L.A.R. et al. Total polyphenol content of tropical marine and coastal flora: Potentials for food and nutraceutical applications. J Appl Phycol 35, 2431–2443 (2023). https://doi.org/10.1007/s10811-023-03024-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-023-03024-w

Keywords

Navigation