Skip to main content

Advertisement

Log in

Effects of six phytohormones on the growth behavior and cellular biochemical components of Chlorella vulgaris 31

  • Research
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Microalgae possess similar characteristics to higher plants and research has shown that phytohormones can influence the metabolic and physiological properties of microalgae. Trace amounts of phytohormones can affect the production performance of microalgae, which can be used to increase the yield of specific components of microalgae, elevate the position of microalgae in the industrial raw material supply chain, promote green production, and reduce carbon emissions. This study determined the growth and physiological and biochemical composition of Chlorella vulgaris 31 (Cv-31) after 12 days of cultivation under treatment with different concentrations of six phytohormones, 6-benzyladenine (6-BA), ethylene (ETH), gibberellin (GA), indoleacetic acid (IAA), naphthaleneacetic acid (NAA), and salicylic acid (SA). Different concentrations and types of phytohormones had a significant effect on the growth and biochemical composition of Cv-31. GA at 10 mg L−1 effectively promoted the growth and pigment accumulation of Cv-31, while SA at 7.5 mg L−1 increased lipid accumulation by 3.3 times compared to the control. ETH and GA contributed to the accumulation of soluble sugars, but the six phytohormones had a limited effect on the protein content of Cv-31. This study comprehensively examined the effects of six phytohormones at different concentrations on the growth and main components of Cv-31, providing a reference for related research and production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  • Ambati RR, Gogisetty D, Aswathanarayana RG, Ravi S, Bikkina PN, Bo L, Yuepeng S (2019) Industrial potential of carotenoid pigments from microalgae: Current trends and future prospects. Crit Rev Food Sci Nutr 59:1880–1902

    CAS  PubMed  Google Scholar 

  • Bajguz A, Piotrowska-Niczyporuk A (2014) Interactive effect of brassinosteroids and cytokinins on growth, chlorophyll, monosaccharide and protein content in the green alga Chlorella vulgaris (Trebouxiophyceae). Plant Physiol Biochem 80:176–183

    CAS  PubMed  Google Scholar 

  • Begum H, Yusoff FM, Banerjee S, Khatoon H, Shariff M (2016) Availability and utilization of pigments from microalgae. Crit Rev Food Sci Nutr 56:2209–2222

    CAS  PubMed  Google Scholar 

  • Chen H, Wang Q (2021) Regulatory mechanisms of lipid biosynthesis in microalgae. Biol Rev 96:2373–2391

    CAS  PubMed  Google Scholar 

  • Chen J-h, Wei D, Lim P-E (2020) Enhanced coproduction of astaxanthin and lipids by the green microalga Chromochloris zofingiensis: Selected phytohormones as positive stimulators. Bioresour Technol 295:122242

    CAS  PubMed  Google Scholar 

  • Criado MV, Caputo C, Roberts IN, Castro MA, Barneix AJ (2009) Cytokinin-induced changes of nitrogen remobilization and chloroplast ultrastructure in wheat (Triticum aestivum). J Plant Physiol 166:1775–1785

    CAS  PubMed  Google Scholar 

  • Dao G-H, Wang X-X, Zhang T-Y, Wu G-X, Zhan X-M, Hu H-Y (2019) Enhanced biomass production and fatty acid accumulation in Scenedesmus sp. LX1 treated with 6-benzylaminopurine. Algal Res 44:101714

  • Ding W, Peng J, Zhao Y, Zhao P, Xu J-W, Li T, Yu X (2019) A strategy for boosting astaxanthin accumulation in green microalga Haematococcus pluvialis by using combined diethyl aminoethyl hexanoate and high light. J Appl Phycol 31:171–181

    CAS  Google Scholar 

  • DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    CAS  Google Scholar 

  • El Arroussi H, Benhima R, Bennis I, El Mernissi N, Wahby I (2015) Improvement of the potential of Dunaliella tertiolecta as a source of biodiesel by auxin treatment coupled to salt stress. Renew Energy 77:15–19

    Google Scholar 

  • Fu C-C, Hung T-C, Chen J-Y, Su C-H, Wu W-T (2010) Hydrolysis of microalgae cell walls for production of reducing sugar and lipid extraction. Bioresour Technol 101:8750–8754

    CAS  PubMed  Google Scholar 

  • Gao Z, Meng C, Zhang X, Xu D, Miao X, Wang Y, Yang L, Lv H, Chen L, Ye N (2012) Induction of salicylic acid (SA) on transcriptional expression of eight carotenoid genes and astaxanthin accumulation in Haematococcus pluvialis. Enzyme Microb Technol 51:225–230

    CAS  PubMed  Google Scholar 

  • Han X, Zeng H, Bartocci P, Fantozzi F, Yan Y (2018) Phytohormones and effects on growth and metabolites of microalgae: a review. Fermentation 4:25

    Google Scholar 

  • Hirayama T, Mochida K (2023) Plant hormonomics: a key tool for deep physiological phenotyping to improve crop productivity. Plant Cell Physiol 63(12):1826–1839

  • Jusoh M, Loh SH, Aziz A, Cha TS (2019) Gibberellin promotes cell growth and induces changes in fatty acid biosynthesis and upregulates fatty acid biosynthetic genes in Chlorella vulgaris UMT-M1. Appl Biochem Biotechnol 188:450–459

    CAS  PubMed  Google Scholar 

  • Kokkiligadda S, Pandey B, Ronda SR (2017) Effect of plant growth regulators on production of alpha-linolenic acid from microalgae Chlorella pyrenoidosa. Sādhanā 42:1821–1824

    CAS  Google Scholar 

  • Kong W-B, Yang H, Cao Y-T, Song H, Hua S-F, Xia C-G (2013) Effect of glycerol and glucose on the enhancement of biomass, lipid and soluble carbohydrate production by Chlorella vulgaris in mixotrophic culture. Food Technol Biotechnol 51:62

    CAS  Google Scholar 

  • Kong W, Yang S, Wang H, Huo H, Guo B, Liu N, Zhang A, Niu S (2020) Regulation of biomass, pigments, and lipid production by Chlorella vulgaris 31 through controlling trophic modes and carbon sources. J Appl Phycol 32:1569–1579

    CAS  Google Scholar 

  • Kozlova TA, Hardy BP, Krishna P, Levin DB (2017) Effect of phytohormones on growth and accumulation of pigments and fatty acids in the microalgae Scenedesmus quadricauda. Algal Res 27:325–334

    Google Scholar 

  • Krzemińska I, Pawlik-Skowrońska B, Trzcińska M, Tys J (2014) Influence of photoperiods on the growth rate and biomass productivity of green microalgae. Bioprocess Biosyst Eng 37:735–741

    PubMed  Google Scholar 

  • Levasseur W, Perré P, Pozzobon V (2020) A review of high value-added molecules production by microalgae in light of the classification. Biotechnol Adv 41:107545

    CAS  PubMed  Google Scholar 

  • Li D, Zhao Y, Ding W, Zhao P, Xu J-W, Li T, Ma H, Yu X (2017) A strategy for promoting lipid production in green microalgae Monoraphidium sp. QLY-1 by combined melatonin and photoinduction. Bioresour Technol 235:104–112

    CAS  PubMed  Google Scholar 

  • Lin B, Ahmed F, Du H, Li Z, Yan Y, Huang Y, Cui M, Yin Y, Li B, Wang M (2018) Plant growth regulators promote lipid and carotenoid accumulation in Chlorella vulgaris. J Appl Phycol 30:1549–1561

    CAS  Google Scholar 

  • Liu J, Qiu W, Song Y (2016) Stimulatory effect of auxins on the growth and lipid productivity of Chlorella pyrenoidosa and Scenedesmus quadricauda. Algal Res 18:273–280

    Google Scholar 

  • Liu J, Qiu W, Song Y, Peng H, Zhao Y (2017a) The growth and lipid productivity of Chlorella pyrenoidosa enhanced by plant hormones under ammonium stress. Environ Prog Sust Energy 36:1187–1193

    CAS  Google Scholar 

  • Liu T, Liu F, Wang C, Wang Z, Li Y (2017b) The boosted biomass and lipid accumulation in Chlorella vulgaris by supplementation of synthetic phytohormone analogs. Bioresour Technol 232:44–52

    CAS  PubMed  Google Scholar 

  • López CVG, García MdCC, Fernández FGA, Bustos CS, Chisti Y, Sevilla JMF (2010) Protein measurements of microalgal and cyanobacterial biomass. Bioresour Technol 101:7587–7591

    PubMed  Google Scholar 

  • Lu Y, Xu J (2015) Phytohormones in microalgae: a new opportunity for microalgal biotechnology? Trends Plant Sci 20:273–282

    CAS  PubMed  Google Scholar 

  • Madani NSH, Shamsaie Mehrgan M, Hosseini Shekarabi SP, Pourang N (2021) Regulatory effect of gibberellic acid (GA3) on the biomass productivity and some metabolites of a marine microalga, Isochrysis galbana. J Appl Phycol 33:255–262

    CAS  Google Scholar 

  • Mansouri H, Ebrahim Nezhad S (2020) Improvement in biochemical parameters and changes in lipid profile of Scenedesmus obliquus by plant growth regulators under mixotrophic condition. Biomass Bioenergy 140:105708

    CAS  Google Scholar 

  • Mishra SK, Suh WI, Farooq W, Moon M, Shrivastav A, Park MS, Yang J-W (2014) Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method. Bioresour Technol 155:330–333

    CAS  PubMed  Google Scholar 

  • Pan X, Chang F, Kang L, Liu Y, Li G, Li D (2008) Effects of gibberellin A3 on growth and microcystin production in Microcystis aeruginosa (Cyanophyta). J Plant Physiol 165:1691–1697

    CAS  PubMed  Google Scholar 

  • Piotrowska-Niczyporuk A, Bajguz A (2014) The effect of natural and synthetic auxins on the growth, metabolite content and antioxidant response of green alga Chlorella vulgaris (Trebouxiophyceae). Plant Growth Regul 73:57–66

    CAS  Google Scholar 

  • Piotrowska A, Czerpak R (2009) Cellular response of light/dark-grown green alga Chlorella vulgaris Beijerinck (Chlorophyceae) to exogenous adenine-and phenylurea-type cytokinins. Plant Physiol Biochem 31:573–585

    CAS  Google Scholar 

  • Razzak SA, Hossain MM, Lucky RA, Bassi AS, De Lasa H (2013) Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—a review. Renew Sust Energy Rev 27:622–653

    CAS  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Ronga D, Biazzi E, Parati K, Carminati D, Carminati E, Tava A (2019) Microalgal biostimulants and biofertilisers in crop productions. Agronomy 9:192

  • Sarwer A, Hamed SM, Osman AI, Jamil F, AaH A-M, Alhajeri NS, Rooney DW (2022) Algal biomass valorization for biofuel production and carbon sequestration: a review. Environ Chem Lett 20:2797–2851

    CAS  Google Scholar 

  • Saygideger SD, Okkay O (2008) Effect of 2,4-dichlorophenoxyacetic acid on growth, protein and chlorophyll-a content of Chlorella vulgaris and Spirulina platensis cells. J Environ Biol 29:175

    CAS  PubMed  Google Scholar 

  • Sivaramakrishnan R, Incharoensakdi A (2020) Plant hormone induced enrichment of Chlorella sp. omega-3 fatty acids. Biotechnol Biofuels 13:7

  • Stirk WA, Bálint P, Tarkowská D, Novák O, Strnad M, Ördög V, van Staden J (2013) Hormone profiles in microalgae: Gibberellins and brassinosteroids. Plant Physiol Biochem 70:348–353

    CAS  PubMed  Google Scholar 

  • Stirk WA, van Staden J (2020) Potential of phytohormones as a strategy to improve microalgae productivity for biotechnological applications. Biotechnol Adv 44:107612

    CAS  PubMed  Google Scholar 

  • Takahashi T (2019) Routine management of microalgae using autofluorescence from chlorophyll. Molecules 24:4441

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vijay AK, Prabha S, Thomas J, Kurian JS, George B (2020) Effect of auxin and its synthetic analogues on the biomass production and biochemical composition of freshwater microalga Ankistrodesmus falcatus CMSACR1001. J Appl Phycol 32:3787–3797

    CAS  Google Scholar 

  • Yin Z, Zhu L, Li S, Hu T, Chu R, Mo F, Hu D, Liu C, Li B (2020) A comprehensive review on cultivation and harvesting of microalgae for biodiesel production: Environmental pollution control and future directions. Bioresour Technol 301:122804

    CAS  PubMed  Google Scholar 

  • Yu X-J, Sun J, Sun Y-Q, Zheng J-Y, Wang Z (2016) Metabolomics analysis of phytohormone gibberellin improving lipid and DHA accumulation in Aurantiochytrium sp. Biochem Eng J 112:258–268

    CAS  Google Scholar 

  • Zheng S, He M, Jiang J, Zou S, Yang W, Zhang Y, Deng J, Wang C (2016) Effect of kelp waste extracts on the growth and lipid accumulation of microalgae. Bioresour Technol 201:80–88

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Higher Education Industry Support Plan Project of Gansu Province, China (2020C-21; 2021CYZC-37); Key Research and Development Project of Gansu Province (22YF7NA118); Incubation Programme for Key Scientific Research Project of Northwest Normal University (NWNU-LKZD2022-02).

Author information

Authors and Affiliations

Authors

Contributions

Zijian Xie: Methodology, Formal analysis, Investigation, Data Curation, Writing -Original Draft, Writing—Review & Editing, Visualization

Saimai Ma: Methodology, Validation, Investigation, Writing—Review & Editing

Yueqin Cao: Methodology, Validation, Formal analysis, Investigation, Writing -Original Draft

Shuting Peng: Methodology, Investigation, Data Curation, Writing—Review & Editing

Xiaoyun Zhang: Methodology, Data Curation, Writing—Review & Editing

Weibao Kong: Conceptualization, Methodology, Resources, Supervision, Project administration, Funding acquisition

Corresponding author

Correspondence to Weibao Kong.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Z., Ma, S., Cao, Y. et al. Effects of six phytohormones on the growth behavior and cellular biochemical components of Chlorella vulgaris 31. J Appl Phycol 35, 1589–1602 (2023). https://doi.org/10.1007/s10811-023-03010-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-023-03010-2

Keywords

Navigation