Skip to main content

Advertisement

Log in

Genetic differentiation in wild Kappaphycus Doty and Eucheuma J. Agardh (Solieriaceae, Rhodophyta) from East Malaysia reveals high inter- and intraspecific diversity with strong biogeographic signal

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The region of Eastern Sabah, Malaysia, harbours a rich diversity of eucheumatoid (i.e. Kappaphycus and Eucheuma spp.) algae. The global cultivation of this group of red algae has generally been increasing over the last five decades to respond to worldwide demand in carrageenans. Yet, the industry relies on a handful of clonally propagated individuals; hence the diverse populations of eucheumatoids in Eastern Sabah, Malaysia are widely regarded as potential source of novel germplasm useful for marker-assisted breeding. Based on an unprecedented depth of sampling of previously surveyed areas, this study was undertaken to determine the specific and intraspecific diversity of wild eucheumatoids in the Eastern Sabah region. Six eucheumatoid populations were haphazardly sampled, yielding 195 specimens. Using our previously established methods, the cox2–3 spacer (332 bp) and cox1 (1,407 bp) genetic markers were sequenced and analysed. Our data confirm that eucheumatoids in this area are extremely diverse: four eucheumatoid species in total were encountered and up to three different species coexist in each location surveyed; across all species, 17 novel haplotypes were uncovered. Importantly, we also found that the populations at the six sites investigated were highly differentiated, suggesting that nearby islands may also harbour distinct populations and more unknown haplotypes. Our findings also identified several cox2–3 spacer farmed haplotypes of K. alvarezii (haplotype 3, SWAG) and K. striatus (haplotype 89), suggesting that escapees from farms reproduce in the wild and may potentially compete with the indigenous eucheumatoid population in East Malaysia. These results highlight a need to extend genetic surveys to other islands for discovering novel diversity and to extend the coverage of conservation policies. They also stress the importance of Malaysia acting now to develop its own cultivars by tapping into the country’s rich natural diversity, as well as assessing the risks of bioinvasion to the natural population via long-term biodiversity assessments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article and its supplementary information files.

References

  • Araújo PG, Ribeiro ALNL, Yokoya NS, Fujii MT (2014) Temperature and salinity responses of drifting specimens of Kappaphycus alvarezii (Gigartinales, Rhodophyta) farmed on the Brazilian tropical coast. J Appl Phycol 26:1979–1988

    Article  Google Scholar 

  • Azizi A, Mohd Hanafi N, Basiran MN, Teo CH (2018) Evaluation of disease resistance and tolerance to elevated temperature stress of the selected tissue-cultured Kappaphycus alvarezii Doty 1985 under optimized laboratory conditions. 3Biotech 8:1–10

    Google Scholar 

  • Bast F, John AA, Bhushan S (2016) Molecular assessment of invasive carrageenophyte Kappaphycus alvarezii from India based on ITS-1 sequences. Webbia 71:287–292

    Article  Google Scholar 

  • Bast F (2014) An illustrated review on cultivation and life history of agronomically important seaplants. In: Pomin VH (ed) Seaweeds: agricultural uses, biological and antioxidant agents. Nova Science Publishers, London pp 39–70

  • Brakel J, Sibonga RC, Dumilag RV, Montalescot V, Campbell I, Cottier-Cook EJ, Ward G, Le Masson V, Liu T, Msuya FE, Brodie J, Lim PE, Gachon CMM (2021) Exploring, harnessing and conserving marine genetic resources towards a sustainable seaweed aquaculture. Plants People Planet 3:337–349

    Article  Google Scholar 

  • Bull JJ, Sanjuán R, Wilke CO (2007) Theory of lethal mutagenesis for viruses. J Virol 81:2930–2939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabrera R, Umanzor S, Díaz-Larrea J, Araújo PG (2019) Kappaphycus alvarezii (Rhodophyta): New record of an exotic species for the Caribbean coast of Costa Rica. Am J Plant Sci 10:1888–1902

    Article  Google Scholar 

  • Cai J, Lovatelli A, Aguilar-Manjarrez J, Cornish L, Dabbadie L, Desrochers A, Diffey S, Gamarro Garrido E, Geehan J, Hurtado A, Lucente D, Mair G, Miao W, Potin P, Przybyla C, Reantaso M, Roubach R, Tauati M, Yuan X (2021) Seaweeds and microalgae: an overview for unlocking their potential in global aquaculture development. FAO Fisheries and Aquaculture Circular. No. 1229

  • Carpenter KE, Barber PH, Crandall ED, Ablan-Lagman MCA, Ambariyanto MGN, Manjaji-Matsumoto BM, Juinio-Meñez MA, Santos MD, Starger CJ, Toha AHA (2011) Comparative phylogeography of the coral triangle and implications for marine management. J Mar Biol 2011:396982

    Article  Google Scholar 

  • Chandrasekaran S, Arun Nagendran N, Pandiaraja D, Krishnankutty N, Kamalakannan B (2008) Bioinvasion of Kappaphycus alvarezii on corals in the Gulf of Mannar. India Curr Sci 94:1167–1172

    Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659

    Article  CAS  PubMed  Google Scholar 

  • Conklin EJ, Smith JE (2005) Abundance and spread of the invasive red algae, Kappaphycus spp., in Kane’ohe Bay, Hawai’i and an experimental assessment of management options. Biol Invasions 7:1029–1039

    Article  Google Scholar 

  • Conklin KY, Kurihara A, Sherwood AR (2009) A molecular method for identification of the morphologically plastic invasive algal genera Eucheuma and Kappaphycus (Rhodophyta, Gigartinales) in Hawaii. J Appl Phycol 21:691–699

    Article  CAS  Google Scholar 

  • de Barros-Barreto MBB, Marinho LC, Reis RP, da Mata CS, Ferreira PCG (2013) Kappaphycus alvarezii (Gigartinales, Rhodophyta) cultivated in Brazil: is it only one species? J Appl Phycol 25:1143–1149

    Article  CAS  Google Scholar 

  • Department of Fisheries Malaysia (2021) Annual Statistics. https://www.dof.gov.my/en/resources/i-extension-en/annual-statistics/ (Accessed 24th Oct 2021)

  • Doty MS (1988) Podromus ad systematica Eucheumatoideorum: a tribe of commercial seaweeds related to Eucheuma (Solieriaceae, Gigartinales). In: Abbott IA (ed) Taxonomy of economic seaweeds with reference to some Pacific and Caribbean species. California Sea Grant College Program, La Jolla [Report T-CSGCP-018], pp 159–207

  • Dumilag RV, Lluisma AO (2014) Resolving the phylogenetic affinities of Kappaphycus inermis within the genus Kappaphycus (Gigartinales, Solieriaceae) using mitochondrial and plastid markers. Phytotaxa 162:223–231

    Article  Google Scholar 

  • Dumilag RV, Liao LM, Lluisma AO (2014) Phylogeny of Betaphycus (Gigartinales, Rhodophyta) as inferred from COI sequences and morphological observations on B. philippinensis. J Appl Phycol 26:587–595

    Article  Google Scholar 

  • Dumilag RV, Orosco FL, Lluisma AO (2016a) Genetic diversity of Kappaphycus species (Gigartinales, Rhodophyta) in the Philippines. Systemat Biodivers 14:441–451

    Article  Google Scholar 

  • Dumilag RV, Salvador RC, Halling C (2016b) Genotype introduction affects population composition of native Philippine Kappaphycus (Gigartinales, Rhodophyta). Conservat Genet Resour 8:439–441

    Article  Google Scholar 

  • Dumilag RV, Gallardo WGM, Garcia CPC, You YE, Chaves AKG, Agahan L (2018) Phenotypic and mtDNA variation in Philippine Kappaphycus cottonii (Gigartinales, Rhodophyta). Mitochondrial DNA A 29:951–963

    Article  CAS  Google Scholar 

  • Dumilag RV, Lin S-M, Zuccarello GC, Kraft GT (2020) The identity of Eucheuma perplexum (Solieriaceae, Gigartinales) and its distinction from Eucheuma serra as exemplified by a proposed new epitype. Phycologia 59:497–505

    Article  Google Scholar 

  • Dumilag RV, Crisostoma BA, Aguinaldo ZA, Hinaloc LAR, Liao LM, Roa-Quiaoit HA, Dangan-Galon F, Zuccarello GC, Guillemin ML, Brodie J, Cottier-Cook EJ, Roleda MY (2022) The diversity of eucheumatoid seaweed cultivars in the Philippines. Rev Fish Sci Aquac. https://doi.org/10.1080/23308249.2022.2060038

  • Dumilag RV, Zuccarello GC (2022) Phylogeny and genetic diversity of the Philippine eucheumatoid genus Mimica (Solieriaceae, Rhodophyta), and the proposal for Kappaphycopsis gen. nov. to include the anomalous species of Kappaphycus, K. cottonii. Phycologia. https://doi.org/10.1080/00318884.2022.2079283

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eggertsen M, Halling C (2021) Knowledge gaps and management recommendations for future paths of sustainable seaweed farming in the Western Indian Ocean. Ambio 50:60–73

    Article  PubMed  Google Scholar 

  • Eranza D, Bahron A, Alin J, Mahmud R, Malusirang S (2017) On-going assessment of issues in the seaweed farming industry in Sabah, Malaysia. J Asian Acad Appl Business 4:49–60

  • Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Geraldino PJL, Yang EC, Kim MS, Boo SM (2009) Systematics of Hypnea asiatica sp. nov. (Hypneaceae, Rhodophyta) based on morphology and nrDNA SSU, plastid rbcL, and mitochondrial coxl. Taxon 58:606–616

    Article  Google Scholar 

  • Glez-Peña D, Gómez-Blanco D, Reboiro-Jato M, Fdez-Riverola F, Posada D (2010) ALTER: program-oriented conversion of DNA and protein alignments. Nucleic Acids Res 38:14–18

    Article  Google Scholar 

  • Goecke F, Klemetsdal G, Ergon Å (2020) Cultivar development of kelps for commercial cultivation—past lessons and future prospects. Front Mar Sci 8:110

    Article  Google Scholar 

  • Hall TA (1999) A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Halling C, Wikström SA, Lilliesköld-Sjöö G, Mörk E, Lundsør E, Zuccarello GC (2013) Introduction of Asian strains and low genetic variation in farmed seaweeds: Indications for new management practices. J Appl Phycol 25:89–95

    Article  Google Scholar 

  • Hayashi L, Hurtado AQ, Msuya FE, Bleicher-Lhonneur G, Critchley AT (2010) A review of Kappaphycus farming: Prospects and constraints. In: Seckbach J, Einav R, Israel A (eds) Seaweeds and their role in globally changing environments. Springer, Dordrecht, pp 251–283

    Chapter  Google Scholar 

  • Hinaloc LAR, Roleda MY (2021) Phenotypic diversity, growth and sexual differentiation in the progeny of wild Kappaphycus alvarezii (Gigartinales, Florideophyceae). Phycologia 60:1–11

    Article  Google Scholar 

  • Ho N, Kassem K (2009) Reef status of Semporna Priority Conservation Area. In Office (Issue November). WWF-Malaysia

  • Hojsgaard D, Hörandl E (2015) A little bit of sex matters for genome evolution in asexual plants. Front Plant Sci 6:82

    Article  PubMed  PubMed Central  Google Scholar 

  • Hurtado AQ, Gerung GS, Yasir S, Critchley AT (2014) Cultivation of tropical red seaweeds in the BIMP-EAGA region. J Appl Phycol 26:707–718

    Article  Google Scholar 

  • Hurtado AQ, Lim PE, Tan J, Phang SM, Neish IC, Critchley AT (2016) Biodiversity and biogeography of commercial tropical carrageenophytes in the southeast asian region. In: Pereira L (ed) Carrageenans: Sources and Extraction Methods, Molecular Structure, Bioactive Properties and Health Effects. Nova Publishers, Hauppauge, pp 51–74

    Google Scholar 

  • Hussin H, Khoso A (2017) Seaweed cultivation and coastal communities in Malaysia: an overview. Asian Fisheries Sci 30:87–100

    Article  Google Scholar 

  • Kasim M, Mustafa A (2017) Comparison growth of Kappaphycus alvarezii (Rhodophyta, Solieriaceae) cultivation in floating cage and longline in Indonesia. Aquac Rep 6:49–55

    Article  Google Scholar 

  • Kasim M, Mustafa A, Male I, Muzuni, Jalil W (2017) New methods on cultivation of Eucheuma denticulatum and Kappahycus alvarezii in Indonesia. J Fish Aquat Sci 12:207–217

    CAS  Google Scholar 

  • Kraft GT (1972) Preliminary studies of Philippine Eucheuma species (Rhodophyta). Part 1. Taxonomy and ecology of Eucheuma arnoldii Webever-van Bosse. Pacific Sci 26:318–334

    Google Scholar 

  • Kraft GT, Liao LM, Millar AJK, Coppejans EGG, Hommersand MH, Freshwater DW (1999) Marine benthic algae (Rhodophyta) from Bulusan, Sorsogon province, southern Luzon, Philippines. Phillipine Sci 36:1–50

    Google Scholar 

  • Kumar YN, Poong SW, Gachon C, Brodie J, Sade A, Lim PE (2020) Impact of elevated temperature on the physiological and biochemical responses of Kappaphycus alvarezii (Rhodophyta). PLoS ONE 15:1–16

    Article  CAS  Google Scholar 

  • Kunjuraman V, Hussin R (2017) Sustainable production of seaweed in Malaysia: a review of policies and future prospects. In: Newton P (ed) Seaweeds: biodiversity, environmental chemistry and ecological impacts. Nova Science Publishers, Hauppauge pp 1–18

  • Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B (2018) PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol 34:772–773

    Google Scholar 

  • Largo DB, Chung IK, Phang SM, Gerung GS, Sondak CFA (2017) Impacts of climate change on Eucheuma-Kappaphycus farming. In: Hurtado A, Critchley A, Neish I (eds) Tropical seaweed farming trends, problems and opportunities. Developments in applied phycology, vol 9. Springer, Cham, pp 121–129

  • Librado P, Rozas J (2009) A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Lim PE, Tan J, Phang SM, Nikmatullah A, Hong DD, Sunarpi H, Hurtado AQ (2014) Genetic diversity of Kappaphycus Doty and Eucheuma J. Agardh (Solieriaceae, Rhodophyta) in Southeast Asia. J Appl Phycol 26:1253–1272

    Article  Google Scholar 

  • Lim PE, Poong SW, Kambey C et al (2021) Sustainable value chain for the seaweed industry in Malaysia and the ASEAN region: a roadmap for policy formulation. United Nations University Institute on Comparative Regional Integration Studies Policy Brief #8. p 12

  • Loureiro R, Gachon CMM, Rebours C (2015) Seaweed cultivation: potential and challenges of crop domestication at an unprecedented pace. New Phytol 206:489–492

    Article  PubMed  Google Scholar 

  • Lovell JT, Williamson RJ, Wright SI, McKay JK, Sharbel TF (2017) Mutation accumulation in an asexual relative of Arabidopsis. PLoS Genet 13:1006550

    Article  Google Scholar 

  • Luxton DM (1993) Aspects of the farming and processing of Kappaphycus and Eucheuma in Indonesia. Hydrobiologia 260:365–371

    Article  Google Scholar 

  • Maili S, Rodrigues KF, Thien VY, Yong WTL, Anton A, Chin GJWL (2016) Development and application of single locus genomic molecular marker for Kappaphycus and Eucheuma (Solieriaceae, Rhodophyta) seaweeds. Aquat Bot 128:26–32

    Article  CAS  Google Scholar 

  • Mammadov J, Buyyarapu R, Guttikonda SK, Parliament K, Abdurakhmonov IY, Kumpatla SP (2018) Wild relatives of maize, rice, cotton, and soybean: treasure troves for tolerance to biotic and abiotic stresses. Front Plant Sci 9:886

  • Market Data Forecast (2020) Global carrageenan market by type (Kappa, Iota And Lambda), by application (food industry dairy, meat, beverages and pet food), pharmaceutical industry and cosmetics industry) by grade (refined carrageenan and semi-refined carrageenan), by seaweed source. https://www.marketdataforecast.com/market-reports/carrageenan-market. Accessed 24 October 2021

  • McHugh DJ (2003) Seaweeds uses as human foods. In: McHugh DJ (ed) A guide to the seaweed industry. FAO Technical paper 441. https://www.fao.org/3/y4765e/y4765e0b.htm. Accessed 24 October 2021

  • Múrias Dos Santos A, Cabezas MP, Tavares AI, Xavier R, Branco M (2016) TcsBU: A tool to extend TCS network layout and visualization. Bioinformatics 32:627–628

    Article  PubMed  Google Scholar 

  • Nettel A, Dodd RS (2007) Drifting propagules and receding swamps: Genetic footprints of mangrove recolonization and dispersal along tropical coasts. Evolution 61:958–971

    Article  CAS  PubMed  Google Scholar 

  • Nguyen HD, Huynh QN (1995) Species of Eucheuma and Kappaphycus in Vietnam. In: Abbott IA (ed) Taxonomy of economic seaweeds, vol 5. California Sea Grant College System, La Jolla pp 229–235

  • Nguyen LT, Schmidt HA, Haeseler VA, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol Biol Evol 32:268–274

    Article  CAS  PubMed  Google Scholar 

  • Nguyen XV, Nguyen-Nhat NT, Nguyen XT, Dao VH, M. Liao L, Papenbrock J, Eble JA (2021) Analysis of rDNA reveals a high genetic diversity of Halophila major in the Wallacea region. PLOS ONE 16(10):e0258956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nor AM, Gray TS, Caldwell GS, Stead SM (2020) A value chain analysis of Malaysia’s seaweed industry. J Appl Phycol 32:2161–2171

    Article  CAS  Google Scholar 

  • Núñez-Resendiz ML, Dreckmann KM, Sentíes A, Wynne MJ, León-Tejera HP (2019) Eucheumatopsis isiformis gen. & comb. nov. (Solieriaceae, Rhodophyta) from the Yucatan Peninsula, to accommodate Eucheuma isiforme. Phycologia 58:51–62

    Article  Google Scholar 

  • Nurmiah S, Syarief R, Sukarno Peranginangin R, Nurtama B, Jaswir I (2017) Production of refined carrageenan from Kappaphycus alvarezii on pilot plant scale: Optimization of water extraction using response surface methodology. Int Food Res J 24:522–528

    Google Scholar 

  • Pang T, Liu J, Liu Q, Li H, Li J (2015) Observations on pests and diseases affecting a eucheumatoid farm in China. J Appl Phycol 27:1975–1984

    Article  Google Scholar 

  • Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst Biol 67:901–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richards ZT, Huisman JM (2014) Coral-mimicking alga Eucheuma arnoldii found at Ashmore Reef, north-western Australia. Coral Reefs 33:441

    Article  Google Scholar 

  • Roleda MY, Aguinaldo ZZA, Crisostomo BA, Hinaloc LAR, Projimo VZ, Dumilag RV, Lluisma AO (2021) Discovery of novel haplotypes from wild populations of Kappaphycus (Gigartinales, Rhodophyta) in the Philippines. Algae 36:1–12

    Article  CAS  Google Scholar 

  • Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) Mrbayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    Article  PubMed  PubMed Central  Google Scholar 

  • Santiañez WJE, Wynne MJ (2020) Establishment of Mimica gen. nov. To accommodate the anaxiferous species of the economically important red seaweed Eucheuma (Solieriaceae, Rhodophyta). Phytotaxa 439:167–170

    Article  Google Scholar 

  • Santos GA (1989) Carrageenans of species of Eucheuma J. Agardh and Kappaphycus Doty (Solieriaceae, Rhodophyta). Aquat Bot 36:55–67

    Article  CAS  Google Scholar 

  • Sellers AJ, Saltonstall K, Davidson TM (2015) The introduced alga Kappaphycus alvarezii (Doty ex P.C. Silva, 1996) in abandoned cultivation sites in Bocas del Toro, Panama. Bioinvasions Rec 4:1–7

    Article  Google Scholar 

  • Swofford DL (2003) PAUP*. Phylogenetic analysis using parsimony (* and other methods). Version 4. Sinauer Associates, Sunderland

  • Tan J, Lim PE, Phang SM, Hong DD, Sunarpi H, Hurtado AQ (2012) Assessment of four molecular markers as potential DNA barcodes for red algae Kappaphycus Doty and Eucheuma J. Agardh (Solieriaceae, Rhodophyta). PLoS ONE 7:e52905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan J, Lim PE, Phang SM (2013) Phylogenetic relationship of Kappaphycus Doty and Eucheuma J. Agardh (Solieriaceae, Rhodophyta) in Malaysia. J Appl Phycol 25:13–29

    Article  Google Scholar 

  • Tan J, Lim PE, Phang SM, Rahiman A, Nikmatullah A, Sunarpi H, Hurtado AQ (2014) Kappaphycus malesianus sp. nov.: a new species of Kappaphycus (Gigartinales, Rhodophyta) from Southeast Asia. J Appl Phycol 26:1273–1285

    Article  CAS  Google Scholar 

  • Tan PL, Poong SW, Tan J, Brakel J, Gachon C, Brodie J, Sade A, Lim PE (2021) Assessment of genetic diversity within eucheumatoid cultivars in east Sabah, Malaysia. J Appl Phycol 34:709–717

    Article  Google Scholar 

  • Tano SA, Halling C, Lind E, Buriyo A, Wikström SA (2015) Extensive spread of farmed seaweeds causes a shift from native to non-native haplotypes in natural seaweed beds. Mar Biol 162:1983–1992

    Article  Google Scholar 

  • Terada R, Kawaguchi S, Masuda M, Phang SM (2000) Taxonomic notes on marine algae from Malaysia III. Seven species of Rhodophyceae. Bot Mar 43:347–357

    Article  Google Scholar 

  • Thien VY, Yong WTL, Chin GJWL (2016) Morphological and molecular studies of undescribed Kappaphycus species. Int J Mar Sci 6:1–7

    Google Scholar 

  • Thien VY, Yong WTL, Anton A, Chin GJWL (2020) A multiplex PCR method for rapid identification of commercially important seaweeds Kappaphycus alvarezii, Kappaphycus striatus and Eucheuma denticulatum (Rhodophyta, Solieriaceae). Reg Stud Mar Sci 40:101499

    Google Scholar 

  • Tisera WL, Naguit MRA (2009) Ice-ice disease occurrence in seaweed farms in Bais Bay, Negros Oriental and Zamboanga del Norte. The Threshold 4:1–16

    Google Scholar 

  • Trifinopoulos J, Nguyen L, Von HA, Minh BQ (2016) W-IQ-TREE : a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res 44:W232–W235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wade R, Augyte S, Harden M et al (2020) Macroalgal germplasm banking for conservation, food security, and industry. PLoS Biol 18:e3000641

    Article  PubMed  PubMed Central  Google Scholar 

  • Wakibia JG, Bolton JJ, Keats DW, Raitt LM (2006) Factors influencing the growth rates of three commercial eucheumoids at coastal sites in southern Kenya. J Appl Phycol 18:565–573

  • Ward GM, Faisan JP, Cottier-Cook EJ, Gachon C, Hurtado AQ, Lim PE, Matoju I, Msuya FE, Bass D, Brodie J (2020) A review of reported seaweed diseases and pests in aquaculture in Asia. J World Aquac Soc 51:815–828

    Article  Google Scholar 

  • Wright S (1978) Evolution and the genetics of populations. In: Variability within and among natural populations, vol 4. University of Chicago Press, Chicago

  • Yong WTL, Chin GJWL, Rodrigues KF (2016) Genetic identification and mass propagation of economically important seaweeds. In: Thajuddin N, Dhganasekaran D (eds) Algae - Organisms for imminent biotechnology. IntechOPen, London pp 277–305

  • Zhong KL, Song XH, Choi HG, Satoshi S, Weinberger F, Draisma SGA, Duan DL, Hu ZM (2020) MtDNA-based phylogeography of the red algae Agarophyton vermiculophyllum (Gigartinales, Rhodophyta) in the Native Northwest Pacific. Front Mar Sci 7:366

    Article  Google Scholar 

  • Zuccarello GC, Critchley AT, Smith J, Sieber V, Lhonneur GB, West JA (2006) Systematics and genetic variation in commercial Kappaphycus and Eucheuma (Solieriaceae, Rhodophyta). J Appl Phycol 18:643–651

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Mr. Japson Wong, Mr. Ghazali, Mr. Sazali, Ms. Nurmaisyamimi Ramli and officers from the Department of Fisheries Sabah for their helpful assistance during sampling trips in Sabah.

Funding

This work was part of the GlobalSeaweedSTAR project supported by the UK Research and Innovation—Global Challenges Research Fund (GCRF), Biotechnology and Biological Sciences Research Council Grant 2017 No. BB/PO27806/1 (UM Ref. No. IF015-2019) and Higher Institution Centre of Excellence (HICoE) Programme (Grant No.: IOES-2014H) by Ministry of Higher Education Malaysia.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Phaik-Eem Lim, Juliet Brodie, Claire Gachon; Methodology: Pui-Ling Tan, Sze-Wan Poong; Formal analysis and investigation: Ji Tan, Sze-Wan Poong; Writing-original draft preparation: Ji Tan; Writing – review and editing: Ji Tan, Sze-Wan Poong, Janina Brakel, Claire Gachon, Juliet Brodie, Phaik-Eem Lim; Funding acquisition: Phaik-Eem Lim, Claire Gachon, Juliet Brodie; Resources: Ahemad Sade, Azhar Kassim.

Corresponding authors

Correspondence to Sze-Wan Poong or Phaik-Eem Lim.

Ethics declarations

Conflicts of interest/Competing interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, J., Tan, PL., Poong, SW. et al. Genetic differentiation in wild Kappaphycus Doty and Eucheuma J. Agardh (Solieriaceae, Rhodophyta) from East Malaysia reveals high inter- and intraspecific diversity with strong biogeographic signal. J Appl Phycol 34, 2719–2733 (2022). https://doi.org/10.1007/s10811-022-02809-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-022-02809-9

Keywords

Navigation