Skip to main content

Advertisement

Log in

Static magnetic field improved growth and astaxanthin production in Haematococcus lacustris via the regulation of carbohydrate accumulation, H2O2 level, and antioxidant defense system

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

This article has been updated

Abstract

This study assessed a culture system using a static magnetic field (SMF) for improving biomass and astaxanthin production in Haematococcus lacustris. Different intensities of SMF (0, 2, 4, and 8 mT) were applied to H. lacustris cell suspension culture at the beginning of the logarithmic phase, and then cell growth, antioxidant compounds, and oxidative damage were analyzed after 12 days. SMF at 8 mT caused a significant increase in cell growth, chlorophyll (a and b) concentration, total carbohydrate and protein contents, and antioxidant enzyme activities, including superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase. Maximum astaxanthin accumulation (21.05 mg g−1, 4.9 mg L−1 dry weight) was identified at 4 mT, which was 1.58 times compared to control. SMF increased significantly hydrogen peroxide (H2O2) level and decreased malondialdehyde content, especially at 4 mT. Electrophoretic patterns displayed Mn-SOD, and CAT1 isoforms were the main isoforms to scavenge the ROS in H. lacustris cells. Moreover, SMF significantly enhanced total phenol, flavonoid, and DPPH scavenging activity. SMF-treated H. lacustris extracts showed an antibacterial potential against Staphylococcus aureus. These results provided an efficient method for improving growth and astaxanthin production and displayed the biochemical mechanism underlying secondary metabolite production in H. lacustris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data availability

Data will be made available upon request.

Change history

  • 29 August 2022

    The affiliation of Negar Korshidi and Hakimeh Ziyadi has been changed.

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  Google Scholar 

  • Aremu AO, Masondo NA, Molnár Z, Stirk WA, Ördög V, Van Staden J (2016) Changes in phytochemical content and pharmacological activities of three Chlorella strains grown in different nitrogen conditions. J Appl Phycol 28:149–159

    Article  CAS  Google Scholar 

  • Ashouri-Sheikhi A, Hassanpour H, Jonoubi P, Nohooji MG, Nadimifar M (2016) The effect of gamma irradiation on in vitro total phenolic content and antioxidant activity of Ferula gummosa Bioss. J Med Plant 15:122–131

    Google Scholar 

  • Bauer LM, Costa JA, da Rosa AP, Santos LO (2017) Growth stimulation and synthesis of lipids, pigments and antioxidants with magnetic fields in Chlorella kessleri cultivations. Bioresour Technol 244:1425–1432

    Article  CAS  PubMed  Google Scholar 

  • Bouarab Chibane L, Degraeve P, Ferhout H, Bouajila J, Oulahal N (2019) Plant antimicrobial polyphenols as potential natural food preservatives. J Sci Food Agric 99:1457–1474

    Article  CAS  PubMed  Google Scholar 

  • Boussiba S (2000) Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response. Physiol Plant 108:111–117

    Article  CAS  Google Scholar 

  • Boussiba S, Vonshak A (1991) Astaxanthin accumulation in the green alga Haematococcus pluvialis. Plant Cell Physiol 32:1077–1082

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cakmaka T, Cakmak ZE, Dumlupinar R, Tekinay T (2012) Analysis of apoplastic and symplastic antioxidant system in shallot leaves: Impacts of weak static electric and magnetic field. J Plant Physiol 169:1066–1073

    Article  Google Scholar 

  • Capelli B, Bagchi D, Cysewski GR (2013) Synthetic astaxanthin is significantly inferior to algal-based astaxanthin as an antioxidant and may not be suitable as a human nutraceutical supplement. Nutra Foods 12:145–152

    CAS  Google Scholar 

  • Chekanov K, Schastnaya E, Neverov K, Leu S, Boussiba S, Zarka A, Solovchenko A (2019) Non-photochemical quenching in the cells of the carotenogenic chlorophyte Haematococcus lacustris under favorable conditions and under stress. Biochim Biophys Acta Gen Subj 1863:1429–1442

    Article  CAS  PubMed  Google Scholar 

  • Cipolatti EP, Remedi RD, Santos Sá C, Rodrigues AB, Ramos JM, Burkert CA, Furlong EB, de Medeiros Burkert JF (2019) Use of agroindustrial byproducts as substrate for production of carotenoids with antioxidant potential by wild yeasts. Biocatal Agric Biotechnol 20:101208

    Article  Google Scholar 

  • Couée I, Sulmon C, Gouesbet G, El Amrani A (2006) Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot 57:449–459

    Article  PubMed  Google Scholar 

  • Deamici KM, Costa JA, Santos LO (2016) Magnetic fields as triggers of microalga growth: evaluation of its effect on Spirulina sp. Bioresour Technol 220:62–67

    Article  CAS  PubMed  Google Scholar 

  • Deamici KM, Santos LO, Costa JA (2019) Use of static magnetic fields to increase CO2 biofixation by the microalga Chlorella fusca. Bioresour Technol 276:103–109

  • Demmig-Adams B, Cohu C, Muller O, Adams W III (2012) Modulation of photosynthetic energy conversion efficiency in nature: from seconds to seasons. Photosynth Res 113:75–88

    Article  CAS  PubMed  Google Scholar 

  • Ding W, Li Q, Han B, Zhao Y, Geng S, Ning D, Ma T, Yu X (2019) Comparative physiological and metabolomic analyses of the hyper-accumulation of astaxanthin and lipids in Haematococcus pluvialis upon treatment with butylated hydroxyanisole. Bioresour Technol 292:122002

    Article  CAS  PubMed  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Duval B, Shetty K, Thomas W (1999) Phenolic compounds and antioxidant properties in the snow alga Chlamydomonas nivalis after exposure to UV light. J Appl Phycol 11:559–566

    Article  CAS  Google Scholar 

  • Emile JM, Clerkx H, Blankestijn-De V, Gerda JR, Groot S, Koornneef M (2003) Characterization of green seed, an enhancer of abi3-1 in Arabidopsis that affects seed longevity. Plant Physiol 132:1077–1084

    Article  Google Scholar 

  • Esitken A, Turan M (2004) Alternating magnetic field effects on yield and plant nutrient element composition of strawberry (Fragaria ananassa cv. Camarosa). Soil Plant Sci 54:135–139

    Google Scholar 

  • Faraloni C, Lorenzo TD, Bonetti A (2021) Impact of light stress on the synthesis of both antioxidants polyphenols and carotenoids, as fast photoprotective response in Chlamydomonas reinhardtii: new prospective for biotechnological potential of this microalga. Symmetry 13:2220

    Article  CAS  Google Scholar 

  • Ferrada P, Rodríguez S, Serrano G, Miranda-Ostojic C, Maureira A, Zapata M (2020) An analytical-experimental approach to quantifying the effects of static magnetic fields for cell culture applications. Appl Sci 10:531

    Article  CAS  Google Scholar 

  • Frongia F, Forti L, Arru L (2020) Sound perception and its effects in plants and algae. Plant Signal Behav 15:1828674

    Article  PubMed  PubMed Central  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases II. Purification and quantitative relationship with water-soluble protein in seedlings. J Plant Physiol 59:315–318

    Article  CAS  Google Scholar 

  • Guerin M, Huntley ME, Olaizola M (2003) Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol 21:210–216

    Article  CAS  PubMed  Google Scholar 

  • Han D, Li Y, Hu Q (2013) Astaxanthin in microalgae: pathways, functions and biotechnological implications. Algae 28:131–147

    Article  CAS  Google Scholar 

  • Hang C, Liu J, Zhang L (2017) Cell cycles and proliferation patterns in Haematococcus pluvialis. Chin J Oceanol Limnol 35:1205–1211

    Article  Google Scholar 

  • Hassanpour H, Ghanbarzadeh M (2021) Induction of cell division and antioxidative enzyme activity of Matricaria chamomilla L. cell line under clino-rotation. Plant Cell Tissue Organ Cult 146:215–224

    Article  CAS  Google Scholar 

  • Hassanpour H, Hassanpour S (2021) Promoting impact of electromagnetic field on antioxidant system and performance of vascular tissues in Physalis alkekengi. Russ J Plant Physiol 68:545–551

    Article  CAS  Google Scholar 

  • Hassanpour H, Niknam V (2020) Establishment and assessment of cell suspension cultures of Matricaria chamomilla as a possible source of apigenin under static magnetic field. Plant Cell Tissue Organ Cult 142:583–593

    Article  CAS  Google Scholar 

  • Hassanpour H, Niknam V, Haddadi BS (2016) High-frequency vibration improve callus growth via antioxidant enzymes induction in Hyoscyamus kurdicus. Plant Cell Tissue Organ Cult 128:231–241

    Article  Google Scholar 

  • Hatamnia AA, Abbaspour N, Darvishzadeh R (2014) Antioxidant activity and phenolic profile of different parts of Bene (Pistacia atlantica subsp. kurdica) fruits. Food Chem 145:306–311

    Article  CAS  PubMed  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Higuera-Ciapara I, Felix-Valenzuela L, Goycoolea FM (2006) Astaxanthin: a review of its chemistry and applications. Crit Rev Food Sci 46:185–196

    Article  CAS  Google Scholar 

  • Hirano M, Ohta A, Abe K (1998) Magnetic field effects on photosynthesis and growth of the cyanobacterium Spirulina platensis. J Ferment Bioeng 86:313–316

    Article  CAS  Google Scholar 

  • Horton P (2014) Developments in research on non-photochemical fluorescence quenching: emergence of key ideas, theories and experimental approaches. In: Demmig-Adams B, Garab G, Adams I W, Govindjee (eds) Non-photochemical quenching and energy dissipation in plants, algae and cyanobacteria. Springer, Dordrecht pp 73–95

  • Ip PF, Chen F (2005) Employment of reactive oxygen species to enhance astaxanthin formation in Chlorella zofingiensis in heterotrophic culture. Process Biochem 40:3491–3496

    Article  CAS  Google Scholar 

  • Jebara S, Jebara M, Limam F, Aouani ME (2005) Changes in ascorbate peroxidase, catalase, guaiacol peroxidase and superoxide dismutase activities in common bean (Phaseolus vulgaris) nodules under salt stress. Plant Physiol 162:929–936

    Article  CAS  Google Scholar 

  • Kaur G, Alam S, Jabbar Z, Javed K, Athar M (2006) Evaluation of antioxidant activity of Cassia siamea flowers. J Ethnopharmacol 108:340–348

    Article  PubMed  Google Scholar 

  • Kim JY, Lee C, Jeon MS, Park J, Choi YE (2018) Enhancement of microalga Haematococcus pluvialis growth and astaxanthin production by electrical treatment. Bioresour Technol 268:815–819

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi M (2000) In vivo antioxidant role of astaxanthin under oxidative stress in the green alga Haematococcus pluvialis. Appl Microbiol Biotechnol 54:550–555

    Article  CAS  PubMed  Google Scholar 

  • Lee DH, Kim YS, Lee CB (2001) The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.). J Plant Physiol 158:737–745

    Article  CAS  Google Scholar 

  • Li ZY, Guo SY, Li L, Cai MY (2007) Effects of electromagnetic field on the batch cultivation and nutritional composition of Spirulina platensis in an air-lift photobioreactor. Bioresour Technol 98:700–705

    Article  CAS  PubMed  Google Scholar 

  • Li F, Zhang N, Zhang Y, Lian Q, Qin C, Qian Z, Wu Y, Yang Z, Li C, Huang X, Cai M (2021) NaCl promotes the efficient formation of Haematococcus pluvialis nonmotile cells under phosphorus deficiency. Mar Drugs 19:337

  • Liyanaarachchi VC, Nishshanka GKSH, Premaratne RGMM, Ariyadasa TU, Nimarshana PHV, Malik A (2020) Astaxanthin accumulation in the green microalga Haematococcus pluvialis: effect of initial phosphate concentration and stepwise/ continuous light stress. Biotechnol Rep 28:e00538

    Article  Google Scholar 

  • Luo X, Zhang H, Li Q, Zhang J (2020) Effects of static magnetic field on Chlorella vulgaris: growth and extracellular polysaccharide (EPS) production. J Appl Phycol 32:2819–2828

    Article  CAS  Google Scholar 

  • Ma RYN, Chen F (2001) Enhanced production of free trans-astaxanthin by oxidative stress in the cultures of the green microalga Chlorococcum sp. Process Biochem 36:1175–1179

    Article  CAS  Google Scholar 

  • Mansourkhaki M, Hassanpour H, Hekmati M (2019) Effect of static magnetic field on the growth factors, antioxidant activity and anatomical responses of Silybum marianum seedlings. J Plant Process Funct 7:9–15

    Google Scholar 

  • Marinho-Soriano E, Fonseca PC, Carneiro MA, Moreira WS (2006) Seasonal variation in the chemical composition of two tropical seaweeds. Bioresour Technol 97:2402–2406

    Article  CAS  PubMed  Google Scholar 

  • Mashjoor S, Yousefzadi M, Esmaeili MA, Rafiee R (2016) Cytotoxicity and antimicrobial activity of marine macro algae (Dictyotaceae and Ulvaceae) from the Persian Gulf. Cytotechnol 68:1717–1726

    Article  Google Scholar 

  • Menestrino BC, Pintos TH, Sala L, Costa JA, Santos LO (2020) Application of static magnetic fields on the mixotrophic culture of Chlorella minutissima for carbohydrate production. Appl Biochem Biotechnol 192:822–830

    Article  CAS  PubMed  Google Scholar 

  • Morgan MJ, Liu ZG (2011) Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res 21:103–115

    Article  CAS  PubMed  Google Scholar 

  • Patro BS, Bauri AK, Mishra S, Chattopadhyay S (2005) Antioxidant activity of Myristica malabarica extracts and their constituents. J Ag Food Chem 53:6912–6918

    Article  CAS  Google Scholar 

  • Pina-Perez MC, Rivas A, Martínez A, Rodrigo D (2017) Antimicrobial potential of macro and microalgae against pathogenic and spoilage microorganisms in food. Food Chem 235:34–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rezayian M, Niknam V, Faramarzi MA (2019) Antioxidative responses of Nostoc ellipsosporum and Nostoc piscinale to salt stress. J Appl Phycol 31:157–169

    Article  CAS  Google Scholar 

  • Salami S, Hassanpour H, Niknam V (2020) Induction of growth and antioxidant defense mechanisms in Matricaria chamomilla L. callus by vibration. In Vitro Cell Dev Biol Plant 56:644–651

  • Scandalios JG (2005) Oxidative stress: Molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res 38:995–1014

    Article  CAS  PubMed  Google Scholar 

  • Serrano G, Miranda-Ostojic C, Ferrada P, Wulff-Zotelle C, Maureira A, Fuentealba E, Gallardo K, Zapata M, Rivas M (2021) Response to static magnetic field-induced stress in Scenedesmus obliquus and Nannochloropsis gaditana. Mar Drugs 19:527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shabrangi A, Hassanpour H, Majd A, Sheidai M (2015) Induction of genetic variation by electromagnetic fields in Zea mays L. and Brassica napus L. Caryologia 68:272–279

    Article  Google Scholar 

  • Shine MB, Guruprasad KN, Anand A (2011) Enhancement of germination, growth, and photosynthesis in soybean by pre-treatment of seeds with magnetic field. Bioelectromagnetics 32:474–484

    Article  CAS  PubMed  Google Scholar 

  • Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  • Small DP, Huner NP, Wan W (2012) Effect of static magnetic fields on the growth, photosynthesis and ultrastructure of Chlorella kessleri microalgae. Bioelectromagnetics 33:298–308

    Article  CAS  PubMed  Google Scholar 

  • Solovchenko AE (2015) Recent breakthroughs in the biology of astaxanthin accumulation by microalgal cell. Photosynth Res 125:437–449

    Article  CAS  PubMed  Google Scholar 

  • Solovchenko A, Chivkunova O, Semenova L, Selyakh I (2013) Stress-Induced changes in pigment and fatty acid content in the microalga Desmodesmus sp. isolated from a White Sea hydroid. Russ J Plant Physiol 60:313–321

  • Stanier RY, Kunisawa MM, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev 35:171–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinbrenner J, Linden H (2003) Light induction of carotenoid biosynthesis genes in the green alga Haematococcus pluvialis: regulation by photosynthetic redox control. Plant Mol Biol 52:343–356

    Article  CAS  PubMed  Google Scholar 

  • Strasak L, Vetterl V, Smarda J (2002) Effects of low-frequency magnetic fields on bacteria Esherichia coli. Bioelectromagnetics 55:161–164

    CAS  Google Scholar 

  • Taghizadeh M, Nasibi F, Kalantari KM, Ghanati F (2019) Evaluation of secondary metabolites and antioxidant activity in Dracocephalum polychaetum Bornm. cell suspension culture under magnetite nanoparticles and static magnetic field elicitation. Plant Cell Tissue Organ Cult 136:489–498

    Article  CAS  Google Scholar 

  • Usman JG, Sodipo OA, Sandabe UK (2014) In vitro antimicrobial activity of Cucumis metuliferus E. Mey. Ex. Naudin fruit extracts against Salmonella gallinarum. Int J Phytomed 6:268–274

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

    Article  CAS  Google Scholar 

  • Woodbury W, Spencer AK, Stahmann MA (1971) An improved procedure using ferricyanide for detecting catalase isozymes. Anal Biochem 44:301–305

    Article  CAS  PubMed  Google Scholar 

  • Wu K, Ying K, Liu L, Zhou J, Cai Z (2020) High irradiance compensated with CO2 enhances the efficiency of Haematococcus lacustris growth. Biotechnol Rep 26:e00444

  • Yang Y, Kim B, Lee JY (2013) Astaxanthin structure, metabolism, and health benefits. J Hum Nutr Food Sci 1:1003

    Google Scholar 

  • Yee CP (2010) Antioxidant and antimicrobial compounds from the marine algae Padina antillarum. MSc Thesis. Universiti Tunku Abdul Rahman, Malaysia

  • Zhang C, Zhang L, Liu J (2019) Exogenous sodium acetate enhances astaxanthin accumulation and photoprotection in Haematococcus pluvialis at the non-motile stage. J Appl Phycol 31:1001–1008

    Article  CAS  Google Scholar 

  • Zhao Y, Yue C, Geng S, Ning D, Ma T, Yu X (2019) Role of media composition in biomass and astaxanthin production of Haematococcus pluvialis under two-stage cultivation. Bioproc Biosyst Eng 42:593–602

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank the Paya Kesht Company for providing the SMF-generating device.

Funding

The author thanks the Islamic Azad University for financial support.

Author information

Authors and Affiliations

Authors

Contributions

Negar Khorshidi, conducted the bench experiments. Dr. Halimeh Hassanpour designed and supervised the entire work and participated in some experiments. Dr. Hakimeh Ziyadi performed the necessary statistical analysis. All authors read and approved the manuscript.

Corresponding author

Correspondence to Halimeh Hassanpour.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khorshidi, N., Hassanpour, H. & Ziyadi, H. Static magnetic field improved growth and astaxanthin production in Haematococcus lacustris via the regulation of carbohydrate accumulation, H2O2 level, and antioxidant defense system. J Appl Phycol 34, 2283–2295 (2022). https://doi.org/10.1007/s10811-022-02758-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-022-02758-3

Keywords