Skip to main content

Changes in gene expression and biochemical composition of Haematococcus pluvialis grown under different light colors

Abstract

The present study evaluated the effect of blue, red, and white light on the expression of four carotenogenic genes (psy, lyc, bkt, and crtr-r); one gene related to nitrogen metabolism (glb- 1), and another gene related to the absorption of blue light (phot). In addition, both promoter and light–oxygen–voltage (LOV) domain from phot gene were analyzed. Haematococcus pluvialis was grown in 7 followed by 5 days, with complete medium and under stress (nitrogen starvation and different light incidence), respectively. The results support the response to light of phot gene by both gene expression and functional response. Additionally, changes in astaxanthin synthesis and macromolecule accumulation were also observed. Blue and red lights were able to over-regulate all genes within 96 h, including the phot gene. Astaxanthin concentration increased under all conditions. Growth under blue light led to a two- and eightfold increase in astaxanthin content in comparison to growth under red light and white light, respectively. The biomass biochemical composition was evaluated on the 5th day of growth under stress, and the highest protein content was measured in the white light growth. Red light led to the highest biomass carbohydrate content. In sum, the biomass composition and productivity of H. pluvialis varied as a function of light color (wavelength), with the highest protein and astaxanthin productivity observed under white and blue lights, respectively, and the highest carbohydrates and chlorophyll productivity under red light. No variations in lipid productivity were observed in any of the treatments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Aflavo C, Meshulam Y, Zarka A, Boussiba S (2007) On the relative efficiency of two- vs. one-stage production of astaxanthin by the green alga Haematococcus pluvialis. Biotechnol Bioeng 98:300–305

    Google Scholar 

  • Aparicio PJ, Quiñones MA (1991) Blue light, a positive switch signal for nitrate and nitrite uptake by the green alga Monoraphidium braunii. Plant Physiol 95:374–378

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arcondéguy T, Jack R, Merrick M, Arconde T (2001) PII signal transduction proteins, pivotal players in microbial nitrogen control. Microbiol Mol Biol Rev 65:80–105

    PubMed  PubMed Central  Google Scholar 

  • Azuara MP, Aparicio PJ (1983) In vivo blue-light activation of Chlamydomonas reinhardtii nitrate reductase. Plant Physiol 71:286–290

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beltran LM (2013) Web control and monitoring system: experimentation with Haematococcus pluvialis. Int J Eng 26:219–228

    Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    CAS  PubMed  Google Scholar 

  • Boussiba S, Vonshak A (1991) Astaxanthin accumulation in the green alga Haematococcus pluvialis. Plant Cell Physiol 32:1077–1082

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  • Brinda BR, Sarada R, Kamath BS, Ravishankar GA (2004) Accumulation of astaxanthin in flagellated cells of Haematococcus pluvialis - cultural and regulatory aspects. Curr Sci 87:1290–1295

    CAS  Google Scholar 

  • Chang MX, Xiong F (2020) Astaxanthin and its effects in inflammatory responses and inflammation-associated diseases: recent advances and future directions. Molecules 25(22):5342

  • Colusse GA, Duarte MER, Carvalho JC, Noseda MD (2019) Media effects on laboratory scale production costs of Haematococcus pluvialis biomass. Bioresour Technol Reports 7:100236

    Google Scholar 

  • Commichau FM, Forchhammer K, Stülke J (2006) Regulatory links between carbon and nitrogen metabolism. Curr Opin Microbiol 9:167–172

    CAS  PubMed  Google Scholar 

  • Crooks G, Hon G, Chandonia J, Brenner S (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cui D, Hu C, Zou Z, Sun X, Shi J, Xu N (2020) Comparative transcriptome analysis unveils mechanisms underlying the promoting effect of potassium iodide on astaxanthin accumulation in Haematococcus pluvialis under high light stress. Aquaculture 525:735279

    CAS  Google Scholar 

  • Davinelli S, Nielsen ME, Scapagnini G (2018) Astaxanthin in skin health, repair, and disease: a comprehensive review. Nutrients 10:1–12

    Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    CAS  Google Scholar 

  • Ermilova E, Lapina T, Zalutskaya Z, Minaeva E, Fokina O, Forchhammer K (2013) PII signal transduction protein in Chlamydomonas reinhardtii: localization and expression pattern. Protist 164:49–59

    CAS  PubMed  Google Scholar 

  • Fábregas J, Domínguez A, Maseda A, Otero A (2003) Interactions between irradiance and nutrient availability during astaxanthin accumulation and degradation in Haematococcus pluvialis. Appl Microbiol Biotechnol 61:545–551

    PubMed  Google Scholar 

  • Ferrario-Méry S, Mélanie B, Leleu O, Savino G, Hodges M, Meyer C (2005) Physiological characterisation of Arabidopsis mutants affected in the expression of the putative regulatory protein PII. Planta 223:28–39

    PubMed  Google Scholar 

  • Forchhammer K (2004) Global carbon/nitrogen control by PII signal transduction in cyanobacteria: from signals to targets. FEMS Microbiol Rev 28:319–333

    CAS  PubMed  Google Scholar 

  • Fu W, Guomundsson Ó, Paglia G, Herjólfsson G, Andrésson ÓS, Palsson BO, Brynjólfsson S (2013) Enhancement of carotenoid biosynthesis in the green microalga Dunaliella salina with light-emitting diodes and adaptive laboratory evolution. Appl Microbiol Biotechnol 97:2395–2403

    CAS  PubMed  Google Scholar 

  • Glantz ST, Carpenter EJ, Melkonian M, Gardner KH, Boyden ES, Wong GKS, Chow BY (2016) Functional and topological diversity of LOV domain photoreceptors. Proc Natl Acad Sci 113:E1442–E1451

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glemser M, Heining M, Schmidt J, Becker A, Garbe D, Buchholz R, Brück T (2016) Application of light-emitting diodes (LEDs) in cultivation of phototrophic microalgae: current state and perspectives. Appl Microbiol Biotechnol 100:1077–1088

    CAS  PubMed  Google Scholar 

  • Grewe CB, Griehl C (2012) The carotenoid astaxanthin from Haematococcus pluvialis. In: Posten C, Walter C (eds) Microalgal Biotechnology: Integration and Economy. De Gruyter, Berlin, pp 129–144

  • Grünewald K, Eckert M, Hirschberg J, Hagen C (2000) Phytoene desaturase is localized exclusively in the chloroplast and up-regulated at the mRNA level during accumulation of secondary carotenoids in Haematococcus pluvialis (Volvocales, Chlorophyceae). Plant Physiol 122:1261–1268

    PubMed  PubMed Central  Google Scholar 

  • Guerin M, Huntley ME, Olaizola M (2003) Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol 21:210–216

    CAS  PubMed  Google Scholar 

  • Gwak Y, Hwang YS, Wang B, Kim M, Jeong J, Lee CG, Hu Q, Han D, Jin ES (2014) Comparative analyses of lipidomes and transcriptomes reveal a concerted action of multiple defensive systems against photooxidative stress in Haematococcus pluvialis. J Exp Bot 65:4317–4334

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hagen C, Braune W, Greulich F (1993) Functional aspects of secondary carotenoids in Haematococcus lacustris [Girod] Rostafinski (Volvocales) IV. Protection from photodynamic damage. J Photochem Photobiol B  20:153–160

    CAS  Google Scholar 

  • Halavaty AS, Moffat K (2007) N- and C-terminal flanking regions modulate light-induced signal transduction in the LOV2 domain of the blue light sensor phototropin 1 from Avena sativa. Biochemistry 46:14001–14009

    CAS  PubMed  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300

    CAS  PubMed  PubMed Central  Google Scholar 

  • Higuera-Ciapara I, Félix-Valenzuela L, Goycoolea FM (2006) Astaxanthin: a review of its chemistry and applications. Crit Rev Food Sci Nutr 46:185–196

    CAS  PubMed  Google Scholar 

  • Huang K, Beck CF (2003) Phototropin is the blue-light receptor that controls multiple steps in the sexual life cycle of the green alga Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 100:6269–6274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huergo LF, Chandra G, Merrick M (2013) PII signal transduction proteins: nitrogen regulation and beyond. FEMS Microbiol Rev 37:251–283

    CAS  PubMed  Google Scholar 

  • Im CS, Eberhard S, Huang K, Beck CF, Grossman AR (2006) Phototropin involvement in the expression of genes encoding chlorophyll and carotenoid biosynthesis enzymes and LHC apoproteins in Chlamydomonas reinhardtii. Plant J 48:1–16

    CAS  PubMed  Google Scholar 

  • Kamiya A, Saitoh T (2002) Blue-light-control of the uptake of amino acids and of ammonia in Chlorella mutants. Physiol Plant 116:248–254

    CAS  PubMed  Google Scholar 

  • Kasahara M, Kagawa T, Sato Y, Kiyosue T, Wada M (2004) Phototropins mediate blue and red light-induced chloroplast movements in Physcomitrella patens. Plant Physiol 135:1388–1397

    CAS  PubMed  PubMed Central  Google Scholar 

  • Katsuda T, Lababpour A, Shimahara K, Katoh S (2004) Astaxanthin production by Haematococcus pluvialis under illumination with LEDs. Enzyme Microb Technol 35:81–86

    CAS  Google Scholar 

  • Kianianmomeni A, Hallmann A (2014) Algal photoreceptors: in vivo functions and potential applications. Planta 239:1–26

    CAS  PubMed  Google Scholar 

  • Lee C, Ahn JW, Kim JB, Kim JY, Choi YE (2018) Comparative transcriptome analysis of Haematococcus pluvialis on astaxanthin biosynthesis in response to irradiation with red or blue LED wavelength. World J Microbiol Biotechnol 34:1–14

    CAS  Google Scholar 

  • Li Y, Sommerfeld M, Chen F, Hu Q (2008) Consumption of oxygen by astaxanthin biosynthesis: a protective mechanism against oxidative stress in Haematococcus pluvialis (Chlorophyceae). J Plant Physiol 165:1783–1797

    CAS  PubMed  Google Scholar 

  • Li Y, Sommerfeld M, Chen F, Hu Q (2010) Effect of photon flux densities on regulation of carotenogenesis and cell viability of Haematococcus pluvialis (Chlorophyceae). J Appl Phycol 22:253–263

    CAS  PubMed  Google Scholar 

  • Li K, Cheng J, Ye Q, He Y, Zhou J, Cen K (2017) In vivo kinetics of lipids and astaxanthin evolution in Haematococcus pluvialis mutant under 15% CO2 using Raman microspectroscopy. Bioresour Technol 244:1439–1444

    CAS  PubMed  Google Scholar 

  • Li Q, Zhang L, Liu J (2019) Comparative transcriptome analysis at seven time points during Haematococcus pluvialis motile cell growth and astaxanthin accumulation. Aquaculture 503:304–311

    CAS  Google Scholar 

  • Liu J, Mao X, Zhou W, Guarnieri MT (2016) Simultaneous production of triacylglycerol and high-value carotenoids by the astaxanthin-producing oleaginous green microalga Chlorella zofingiensis. Bioresour Technol 214:319–327

    CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the delta delta CT method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  • Longworth J, Wu D, Huete-Ortega M, Wright PC, Vaidyanathan S (2016) Proteome response of Phaeodactylum tricornutum, during lipid accumulation induced by nitrogen depletion. Algal Res 18:213–224

    PubMed  PubMed Central  Google Scholar 

  • Lorenzen CJ (1967) Determination of chlorophyll and pheo-pigments: spectrophotometric equations. Limnol Oceanogr 12:343–346

    CAS  Google Scholar 

  • Ma R, Li Y, Lu Y (2017) Sequencing and characterization of novel PII signaling protein gene in microalga Haematococcus pluvialis. Mar Drugs 15:304

  • Ma R, Thomas-Hall SR, Chua ET, Eltanahy E, Netzel ME, Netzel G, Lu Y, Schenk PM (2018a) Blue light enhances astaxanthin biosynthesis metabolism and extraction efficiency in Haematococcus pluvialis by inducing haematocyst germination. Algal Res 35:215–222

    Google Scholar 

  • Ma R, Thomas-Hall SR, Chua ET, Alsenani F, Eltanahy E, Netzel ME, Netzel G, Lu Y, Schenk PM (2018b) Gene expression profiling of astaxanthin and fatty acid pathways in Haematococcus pluvialis in response to different LED lighting conditions. Bioresour Technol 250:591–602

    CAS  PubMed  Google Scholar 

  • Matthijs HCP, Balke H, Van Hes UM, Kroon BMA, Mur LR, Binot RA (1996) Application of light-emitting diodes in bioreactors: flashing light effects and energy economy in algal culture (Chlorella pyrenoidosa). Biotechnol Bioeng 50:98–107

    CAS  PubMed  Google Scholar 

  • Minaeva E, Ermilova E (2015) Sequencing and expression analysis of the gene encoding PII signal protein in Chlorella variabilis NC64A. J Plant Biochem Physiol 3:142

    Google Scholar 

  • Pedmale UV, Huang SSC, Zander M, Cole BJ, Hetzel J, Ljung K, Reis PAB, Sridevi P, Nito K, Nery JR, Ecker JR, Chory J (2016) Cryptochromes interact directly with PIFs to control plant growth in limiting blue light HHS Public Access. Cell 164:233–245

    CAS  PubMed  Google Scholar 

  • Pereira S, Otero A (2020) Haematococcus pluvialis bioprocess optimization: effect of light quality, temperature and irradiance on growth, pigment content and photosynthetic response. Algal Res 51:102027

    Google Scholar 

  • Petroutsos D, Tokutsu R, Maruyama S, Flori S, Greiner A, Magneschi L, Cusant L, Kottke T, Mittage M, Hegemann P, Finazzi G, Minagawa J (2016) A blue-light photoreceptor mediates the feedback regulation of photosynthesis. Nature 537:563–566

  • Ruyters G (1980) Blue light-effects on enzymes of the carbohydrate metabolism in Chlorella 1. Pyruvate kinase. In: Senger H.(ed) The blue light syndrome. Springer, Berlin, pp 361–367

  • Ruyters G (1984) Effects of blue light on enzymes. In: Senger H (eds) Blue light effects in biological systems. Springer, Berlin, pp 253–263

  • Saha SK, McHugh E, Hayes J, Moane S, Walsh D, Murray P (2013) Effect of various stress-regulatory factors on biomass and lipid production in microalga Haematococcus pluvialis. Bioresour Technol 128:118–124

    CAS  PubMed  Google Scholar 

  • Sakuraba Y, Yanagisawa S (2018) Light signalling-induced regulation of nutrient acquisition and utilisation in plants. Semin Cell Dev Biol 83:123–132

    CAS  PubMed  Google Scholar 

  • Sakurai S, Shimizu T, Ohto U (2017) The crystal structure of the AhRR–ARNT heterodimer reveals the structural basis of the repression of AhR-mediated transcription. J Biol Chem 292:17609–17616

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sathasivam R, Ki JS (2018) A review of the biological activities of microalgal carotenoids and their potential use in healthcare and cosmetic industries. Mar Drugs 16:26

  • Schulze PSC, Barreira LA, Pereira HGC, Perales JA, Varela JCS (2014) Light emitting diodes (LEDs) applied to microalgal production. Trends Biotechnol 32:422–430

    CAS  PubMed  Google Scholar 

  • Scibilia L, Girolomoni L, Berteotti S, Alboresi A, Ballottari M (2015) Photosynthetic response to nitrogen starvation and high light in Haematococcus pluvialis. Algal Res 12:170–181

    Google Scholar 

  • Shah MMR, Liang Y, Cheng JJ, Daroch M (2016) Astaxanthin-producing green microalga Haematococcus pluvialis: from single cell to high value commercial products. Front Plant Sci 7:531

  • Steinbrenner J, Linden (2003) Light induction of carotenoid biosynthesis genes in the green alga Haematococcus pluvialis: regulation by photosynthetic redox control. Plant Mol Biol 52:343–356

  • Tran NP, Park JK, Lee CG (2009) Proteomics analysis of proteins in green alga Haematococcus lacustris (Chlorophyceae) expressed under combined stress of nitrogen starvation and high irradiance. Enzyme Microb Technol 45:241–246

    CAS  Google Scholar 

  • Wang C, Hu Z, Zhao C, Mao X (2012) Isolation of the β-carotene ketolase gene promoter from Haematococcus pluvialis and expression of ble in transgenic Chlamydomonas. J Appl Phycol 24:1303–1310

    Google Scholar 

  • Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46:W296–W303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xi T, Kim DG, Roh SW, Choi JS, Choi YE (2016) Enhancement of astaxanthin production using Haematococcus pluvialis with novel LED wavelength shift strategy. Appl Microbiol Biotechnol 100:6231–6238

    CAS  PubMed  Google Scholar 

  • Yong YYR, Lee Y-K (1991) Do carotenoids play a photoprotective role in the cytoplasm of Haematococcus lacustris (Chlorophyta)? Phycologia 30:257–261

    Google Scholar 

  • Zhang C, Zhang L, Liu J (2019) The interrelation between photorespiration and astaxanthin accumulation in Haematococcus pluvialis using metabolomic analysis. Algal Res 41:101520

    Google Scholar 

  • Zhang L, Zhang C, Liu J, Yang N (2020) A strategy for stimulating astaxanthin and lipid production in Haematococcus pluvialis by exogenous glycerol application under low light. Algal Res 46:101779

    Google Scholar 

  • Zhao Y, Yue C, Ding W, Li T, Xu JW, Zhao P, Ma H, Yu X (2018) Butylated hydroxytoluene induces astaxanthin and lipid production in Haematococcus pluvialis under high-light and nitrogen-deficiency conditions. Bioresour Technol 266:315–321

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Lia Carolina Almeida Soares de Medeiros Kuczera for allowing the use of Carlos Chagas Institute Cell Biology Lab, FIOCRUZ.

Funding

The authors acknowledge the support of the Brazilian National Council for Scientific and Technological Development (CNPq) (project 430986/2016–5 and 312516/2019–3) and the Araucaria Foundation (agreement 115/2018, protocol 50.579-PRONEX) for financial support. We thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/PROAP – Finance Code 001) for financial support and for the scholarships provided to BS, DPC, and MFP. LVGT (312502/2019–2), ABM (308460/2020–0), JVCV (313646/2020–1), and VMK (312516/2019–3) acknowledge Brazilian National Council of Scientific and Technological Development (CNPq) for their research productivity grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanessa Merlo Kava.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Santos, B., da Conceição, D.P., Corrêa, D.O. et al. Changes in gene expression and biochemical composition of Haematococcus pluvialis grown under different light colors. J Appl Phycol 34, 729–743 (2022). https://doi.org/10.1007/s10811-022-02696-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-022-02696-0

Keywords

  • Chlorophyceae
  • Carotenogenesis
  • Gene expression
  • Astaxanthin