Skip to main content
Log in

Screening and effect evaluation of chemical inducers for enhancing astaxanthin and lipid production in mixotrophic Chromochloris zofingiensis

Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

A two-stage screening approach of chemical inducers was carried out to evaluate the positive effect on enhancing astaxanthin and lipid production in mixotrophic Chromochloris zofingiensis. The results demonstrated that oxidants were able to increase the astaxanthin content high up to 11.4 mg g−1 biomass, while pyruvic acid promoted the cell growth and increased the contents of astaxanthin and lipids up to 10.7 mg g−1 and 66.1% dry weight. The highest yield (87.0 mg L−1) and productivity (7.3 mg L−1 day−1) of astaxanthin were obtained in parallel with high lipid productivity (459.0 mg L−1 day−1). The correlations between the dosage effect of chemical inducers and metabolites variation were further examined by statistical analyses. Additionally, C. zofingiensis-derived lipids were estimated to be more viable and feasible as edible oils based on fatty acid characteristics assessment. The present work highlights the effective screening strategy of chemical inducers for enhancing astaxanthin and lipid production and the potential application in mixotrophic C. zofingiensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

The datasets generated during and/or analyzed during the current study are present in the paper. Additional data are available from the corresponding author on reasonable request.

References

  • Bai XC, Sun CC, Xie J, Song H, Zhu QQ, Su YY, Qian HF, Fu ZW (2015) Effects of atrazine on photosynthesis and defense response and the underlying mechanisms in Phaeodactylum tricornutum. Environ Sci Pollut Res 22:17499–17507

    Article  CAS  Google Scholar 

  • Bar E, Rise M, Vishkautsan M (1995) Pigment and structural changes in Chlorella zofingiensis upon light and nitrogen stress. J Plant Physiol 146:527–534

    Article  CAS  Google Scholar 

  • Bialek A, Bialek M, Jelinska M, Tokarz A (2017) Fatty acid composition and oxidative characteristics of novel edible oils in Poland. Cyta-J Food 15:1–8

    CAS  Google Scholar 

  • Borowitzka MA (2018) The “stress” concept in microalgal biology—homeostasis, acclimation and adaptation. J Appl Phycol 30:2815–2825

    Article  Google Scholar 

  • Caarls L, Elberse J, Awwanah M, Ludwig NR, de Vries M, Zeilmaker T, Van Wees SCM, Schuurink RC, Van den Ackerveken G (2017) Arabidopsis jasmonate-induced oxygenases down-regulate plant immunity by hydroxylation and inactivation of the hormone jasmonic acid. Proc Nat Acad Sci USA 114:6388–6393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Candela CG, Lopez LMB, Kohen VL (2011) Importance of a balanced omega 6/omega 3 ratio for the maintenance of health. Nutritional Recommendations Nutr Hosp 26:323–329

    CAS  Google Scholar 

  • Chalifour A, Juneau P (2011) Temperature-dependent sensitivity of growth and photosynthesis of Scenedesmus obliquus, Navicula pelliculosa and two strains of Microcystis aeruginosa to the herbicide atrazine. Aquat Toxicol 103:9–17

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Wei D, Chen G, Wang Y, Chen F (2009) Employment of organic acids to enhance astaxanthin formation in heterotrophic Chlorella zofingiensis. J Food Process Pres 33:271–284

    Article  CAS  Google Scholar 

  • Chen T, Liu J, Guo B, Ma X, Sun P, Liu B, Chen F (2015) Light attenuates lipid accumulation while enhancing cell proliferation and starch synthesis in the glucose-fed oleaginous microalga Chlorella zofingiensis. Sci Rep 5:14936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Wei D, Pohnert G (2017a) Rapid estimation of astaxanthin and the carotenoid-to-chlorophyll ratio in the green microalga Chromochloris zofingiensis using flow cytometry. Mar Drugs 15:231–253

    Article  PubMed Central  Google Scholar 

  • Chen JH, Liu L, Wei D (2017b) Enhanced production of astaxanthin by Chromochloris zofingiensis in a microplate-based culture system under high light irradiation. Bioresour Technol 245:518–529

    Article  CAS  PubMed  Google Scholar 

  • Chen JH, Wei D, Lim PE (2020) Enhanced coproduction of astaxanthin and lipids by the green microalga Chromochloris zofingiensis: selected phytohormones as positive stimulators. Bioresour Technol 295:122242

    Article  CAS  PubMed  Google Scholar 

  • Da Silveira MG, Golovina EA, Hoekstra FA, Rombouts FM, Abee T (2003) Membrane fluidity adjustments in ethanol-stressed Oenococcus oeni cells. Appl Environ Microb 69:5826–5832

    Article  Google Scholar 

  • Doddaiah KM, Narayan A, Aswathanarayana RG, Ravi S (2013) Effect of metabolic inhibitors on growth and carotenoid production in Dunaliella bardawil. J Food Sci Tech Mys 50:1130–1136

    Article  Google Scholar 

  • Du F, Hu C, Sun X, Xu N (2020) Transcriptome analysis reveals pathways responsible for the promoting effect of sucrose on astaxanthin accumulation in Haematococcus pluvialis under high light condition. Aquaculture 530:735757

    Article  Google Scholar 

  • Dubois V, Breton S, Linder M, Fanni J, Parmentier M (2007) Fatty acid profiles of 80 vegetable oils with regard to their nutritional potential. Eur J Lipid Sci Tech 109:710–732

    Article  CAS  Google Scholar 

  • Fang L, Zhang J, Fei Z, Wan M (2020) Astaxanthin accumulation difference between non-motile cells and akinetes of Haematococcus pluvialis was affected by pyruvate metabolism. Bioresour Bioprocess 7:1–12

    Article  Google Scholar 

  • Franz AK, Danielewicz MA, Wong DM, Anderson LA, Boothe JR (2013) Phenotypic screening with oleaginous microalgae reveals modulators of lipid productivity. ACS Chem Biol 8:1053–1062

    Article  CAS  PubMed  Google Scholar 

  • Giakoumis EG (2018) Analysis of 22 vegetable oils’ physico-chemical properties and fatty acid composition on a statistical basis, and correlation with the degree of unsaturation. Renew Energ 126:403–419

    Article  CAS  Google Scholar 

  • Gomes MP, Smedbol E, Chalifour A, Henault-Ethier L, Labrecque M, Lepage L, Lucotte M, Juneau P (2014) Alteration of plant physiology by glyphosate and its by-product aminomethylphosphonic acid: an overview. J Exp Bot 65:4691–4703

    Article  CAS  PubMed  Google Scholar 

  • Horvath SE, Daum G (2013) Lipids of mitochondria. Prog Lipid Res 52:590–614

    Article  CAS  PubMed  Google Scholar 

  • Huang YF, Zhang DM, Xue SZ, Wang M, Cong W (2016) The potential of microalgae lipids for edible oil production. Appl Biochem Biotech 180:438–451

    Article  CAS  Google Scholar 

  • Ip PF, Wong KH, Chen F (2004) Enhanced production of astaxanthin by the green microalga Chlorella zofingiensis in mixotrophic culture. Process Biochem 39:1761–1766

    Article  CAS  Google Scholar 

  • Ismail SAA, Ali RFM (2015) Physico-chemical properties of biodiesel manufactured from waste frying oil using domestic adsorbents. Sci Technol Adv Mat 16 (3):034602

  • Janchot K, Rauytanapanit M, Honda M, Hibino T, Sirisattha S, Praneenararat T, Kageyama H, Waditee-Sirisattha R (2019) Effects of potassium chloride-induced stress on the carotenoids canthaxanthin, astaxanthin, and lipid accumulations in the green chlorococcal microalga strain TISTR 9500. J Eukaryot Microbiol 66:778–787

    Article  CAS  PubMed  Google Scholar 

  • Kadam SU, Tiwari BK, O’Donnell CP (2013) Application of novel extraction technologies for bioactives from marine algae. J Agr Food Chem 61:4667–4675

    Article  CAS  Google Scholar 

  • Kou Y, Liu M, Sun P, Dong Z, Liu J (2020) High light boosts salinity stress-induced biosynthesis of astaxanthin and lipids in the green alga Chromochloris zofingiensis. Algal Res 50:101976

    Article  Google Scholar 

  • Liu J, Sun Z, Gerken H, Liu Z, Jiang Y, Chen F (2014) Chlorella zofingiensis as an alternative microalgal producer of astaxanthin: biology and industrial potential. Mar Drugs 12:3487–3515

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu J, Mao X, Zhou W, Guarnieri MT (2016) Simultaneous production of triacylglycerol and high-value carotenoids by the astaxanthin-producing oleaginous green microalga Chlorella zofingiensis. Bioresour Technol 214:319–327

    Article  CAS  Google Scholar 

  • Liu YH, Alimujiang A, Wang X, Luo SW, Balamurugan S, Yang WD, Liu JS, Zhang L, Li HY (2019) Ethanol induced jasmonate pathway promotes astaxanthin hyperaccumulation in Haematococcus pluvialis. Bioresour Technol 289:121720

    Article  CAS  PubMed  Google Scholar 

  • Liu ZJ, van den Berg C, Weusthuis RA, Dragone G, Mussatto SI (2021) Strategies for an improved extraction and separation of lipids and carotenoids from oleaginous yeast. Sep Purif Technol 257:117946

    Article  CAS  Google Scholar 

  • Lu Q (2019) Liu JZ (2019) Enhanced astaxanthin production in Escherichia coli via morphology and oxidative stress engineering. J Agr Food Chem 67:11703–11709

    Article  CAS  Google Scholar 

  • Majewska M, Harshkova D, Gusciora M, Aksmann A (2018) Phytotoxic activity of diclofenac: evaluation using a model green alga Chlamydomonas reinhardtii with atrazine as a reference substance. Chemosphere 209:989–997

    Article  CAS  PubMed  Google Scholar 

  • Mao XM, Wu T, Sun DZ, Zhang Z, Chen F (2018) Differential responses of the green microalga Chlorella zofingiensis to the starvation of various nutrients for oil and astaxanthin production. Bioresour Technol 249:791–798

    Article  CAS  PubMed  Google Scholar 

  • Mao XM, Zhang Y, Wang XF, Liu J (2020) Novel insights into salinity-induced lipogenesis and carotenogenesis in the oleaginous astaxanthin-producing alga Chromochloris zofingiensis: a multi-omics study. Biotechnol Biofuels 13 (1).

  • Minyuk G, Sidorov R, Solovchenko A (2020) Effect of nitrogen source on the growth, lipid, and valuable carotenoid production in the green microalga Chromochloris zofingiensis. J Appl Phycol 32:923–935

    Article  CAS  Google Scholar 

  • Mulders KJM, Weesepoel Y, Bodenes P, Lamers PP, Vincken J-P, Martens DE, Gruppen H, Wijffels RH (2015) Nitrogen-depleted Chlorella zofingiensis produces astaxanthin, ketolutein and their fatty acid esters: a carotenoid metabolism study. J Appl Phycol 27:125–140

    Article  CAS  Google Scholar 

  • Nguyen AD, Kim D, Lee EY (2020) Unlocking the biosynthesis of sesquiterpenoids from methane via the methylerythritol phosphate pathway in methanotrophic bacteria, using alpha-humulene as a model compound. Metab Eng 61:69–78

    Article  CAS  PubMed  Google Scholar 

  • Opio P, Jitareerat P, Pongprasert N, Wongs-Aree C, Suzuki Y, Srilaong V (2017) Efficacy of hot water immersion on lime (Citrus auranifolia, Swingle cv. Paan) fruit packed with ethanol vapor in delaying chlorophyll catabolism. Sci Hortic-Amsterdam 224:258–264

    Article  CAS  Google Scholar 

  • Parsaeimehr A, Sun ZL, Dou X, Chen YF (2015) Simultaneous improvement in production of microalgal biodiesel and high-value alpha-linolenic acid by a single regulator acetylcholine. Biotechnol Biofuels 8:1–10

    Article  Google Scholar 

  • Saeki K, Aburai N, Aratani S, Miyashita H, Abe K (2017) Salt-stress and plant hormone-like responses for selective reactions of esterified xanthophylls in the aerial microalga Coelastrella sp KGU-Y002. J Appl Phycol 29:115–122

    Article  CAS  Google Scholar 

  • Saini RK, Keum YS (2018) Omega-3 and omega-6 polyunsaturated fatty acids: dietary sources, metabolism, and significance - A review. Life Sci 203:255–267

    Article  CAS  PubMed  Google Scholar 

  • Samsel A, Seneff S (2013) Glyphosate’s suppression of cytochrome P450 enzymes and amino acid biosynthesis by the gut microbiome: pathways to modern diseases. Entropy 15:1416–1463

    Article  CAS  Google Scholar 

  • Schwarz V, Andosch A, Geretschläger A, Affenzeller M, Lütz-Meindl U (2016) Carbon starvation induces lipid degradation via autophagy in the model alga Micrasterias. J Plant Physiol 208:115–127

    Article  PubMed  Google Scholar 

  • Semkiv M, Sibirny A (2019) Yeasts for bioconversion of crude glycerol to high-value chemicals. In: Sibirny A (ed) Non-conventional Yeasts: from Basic Research to Application. Springer, Cham, pp 389–451

    Chapter  Google Scholar 

  • Shankar A, Agrawal N, Sharma M, Pandey A, Pandey GK (2015) Role of protein tyrosine phosphatases in plants. Curr Genomics 16:224–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun H, Mao X, Wu T, Ren Y, Chen F, Liu B (2018) Novel insight of carotenoid and lipid biosynthesis and their roles in storage carbon metabolism in Chlamydomonas reinhardtii. Bioresour Technol 263:450–457

    Article  CAS  PubMed  Google Scholar 

  • Sun XM, Ren LJ, Zhao QY, Zhang LH, Huang H (2019) Application of chemicals for enhancing lipid production in microalgae-a short review. Bioresour Technol 293:122135

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Zhang Y, Sun L-p, Liu J (2019b) Light elicits astaxanthin biosynthesis and accumulation in the fermented ultrahigh-density Chlorella zofinginesis. J Agr Food Chem 67:5579–5586

    Article  CAS  Google Scholar 

  • Tran NP, Park JK, Kim ZH, Lee CG (2009) Influence of sodium orthovanadate on the production of astaxanthin from green algae Haematococcus lacustris. Biotechnol Bioproc E 14:322–329

    Article  CAS  Google Scholar 

  • Vranova E, Coman D, Gruissem W (2013) Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu Rev Plant Biol 64:665–700

    Article  CAS  PubMed  Google Scholar 

  • Wu T, Ye L, Zhao D, Li S, Li Q, Zhang B, Bi C, Zhang XJME (2017) Membrane engineering - a novel strategy to enhance the production and accumulation of β-carotene in Escherichia coli. Metab Eng 43:85–91

    Article  PubMed  Google Scholar 

  • Yu X, Chen L, Zhang W (2015a) Chemicals to enhance microalgal growth and accumulation of high-value bioproducts. Front Microbiol 6:56

    Article  Google Scholar 

  • Yu X, Niu X, Zhang X, Pei G, Liu J, Chen L, Zhang W (2015b) Identification and mechanism analysis of chemical modulators enhancing astaxanthin accumulation in Haematococcus pluvialis. Algal Res 11:284–293

    Article  Google Scholar 

  • Zhang Z, Huang JJ, Sun DZ, Lee Y, Chen F (2017) Two-step cultivation for production of astaxanthin in Chlorella zofingiensis using a patented energy-free rotating floating photobioreactor (RFP). Bioresour Technol 224:515–522

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Sun DZ, Cheng KW, Chen F (2018) Inhibition of autophagy modulates astaxanthin and total fatty acid biosynthesis in Chlorella zofingiensis under nitrogen starvation. Bioresour Technol 247:610–615

    Article  CAS  PubMed  Google Scholar 

  • Zhang CW, Zhang FL, Dong SJ, He YY, Xu XM, Peng J, Yuan JP (2019) The discrepancy of fatty acid composition of astaxanthin esters and total fatty acids in photoautotrophic and heterotrophic Chlorella zofingiensis. J Am Oil Chem Soc 96:891–901

    Article  CAS  Google Scholar 

  • Zhang S, He YD, Sen B, Wang GY (2020) Reactive oxygen species and their applications toward enhanced lipid accumulation in oleaginous microorganisms. Bioresour Technol 307:123234

    Article  CAS  PubMed  Google Scholar 

  • Zhang YB, Lin HY, Liu CW, Huang JN, Liu ZH (2020) A review for physiological activities of EGCG and the role in improving fertility in humans/mammals. Biomed Pharmacother 127:110186

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Ye Y, Bai F, Liu J (2021a) The oleaginous astaxanthin-producing alga Chromochloris zofingiensis: potential from production to an emerging model for studying lipid metabolism and carotenogenesis. Biotechnol Biofuels 14:191

    Article  CAS  Google Scholar 

  • Zhang Z, Sun D, Cheng KW, Chen F (2021b) Investigation of carbon and energy metabolic mechanism of mixotrophy in Chromochloris zofingiensis. Biotechnol Biofuels 14:36

    Article  CAS  Google Scholar 

  • Zhao YT, Li DF, Ding K, Che RQ, Xu JW, Zhao P, Li T, Ma HX, Yu XY (2016) Production of biomass and lipids by the oleaginous microalgae Monoraphidium sp QLY-1 through heterotrophic cultivation and photo-chemical modulator induction. Bioresour Technol 211:669–676

    Article  CAS  PubMed  Google Scholar 

  • Zhao YT, Xing HL, Li XY, Geng SX, Ning DL, Ma T, Yu XY (2019) Physiological and metabolomics analyses reveal the roles of fulvic acid in enhancing the production of astaxanthin and lipids in Haematococcus pluvialis under abiotic stress conditions. J Agr Food Chem 67:12599–12609

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by Guangdong Basic and Applied Basic Research Foundation (Grant Nos. 2019A1515110591, 2019B1515120002) and the National Key Research and Development Project (2019YFD0900302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Wei.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, JH., Wei, D., Lim, PE. et al. Screening and effect evaluation of chemical inducers for enhancing astaxanthin and lipid production in mixotrophic Chromochloris zofingiensis. J Appl Phycol 34, 159–176 (2022). https://doi.org/10.1007/s10811-021-02618-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-021-02618-6

Keywords

Navigation