Skip to main content
Log in

Growth densities regulate the response to elevated CO2 in a farmed seaweed Pyropia haitanensis (Bangiales, Rhodophyta)

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Atmospheric CO2 concentration is predicted to nearly double by the end of this century. There are a large number of reports on the effects of elevated atmospheric CO2 concentrations on seaweeds. However, the investigation concerning the impacts of combined effects of elevated atmospheric CO2 concentrations and incubation densities on seaweeds is very limited. The marine macroalga Pyropia haitanensis was cultured in jars containing 10 L seawater under outdoor conditions. The treatments were designated as ambient (390 μL·L-1) and elevated (800 μL·L-1) CO2 concentrations, and three incubation densities (1.0, 2.0, and 4.0 g FW·L-1), to examine the effects of elevated CO2 on growth, nutrient uptake percentage, and photosynthesis on the algae grown at different incubation densities conditions. The results showed that elevated CO2 significantly enhanced the relative growth rate (RGR) and nutrient uptake percentage, but inhibited photosynthesis irrespective of the incubation density. The RGR and photosynthesis of P. haitanensis were decreased with increased incubation density. The RGR was even negative at high incubation density of 4.0 g FW·L-1. The nutrient uptake percentage was enhanced with increasing incubation density, regardless of the CO2 concentration in culture. Our results suggested that lower density-grown P. haitanensis was more responsive to CO2 enrichment than higher density-grown algae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andría JR, Brun FG, Perez-Llorens JL, Vergara JJ (2001) Acclimation responses of Gracilaria sp. (Rhodophyta) and Enteromorpha intestinalis (Chlorophyta) to changes in the external inorganic carbon concentration. Bot Mar 44:361–370

    Article  Google Scholar 

  • Barron C, Apostolaki ET, Duarte CM (2012) Dissolved organic carbon release by marine macrophytes. Biogeosci Discuss 9:1529–1555

    Google Scholar 

  • Copertino MS, Cheshire A, Kildea T (2009) Photophysiology of a turf algal community: integrated responses to ambient light and standing biomass. J Phycol 45:324–336

    Article  CAS  Google Scholar 

  • Demetropoulos CL, Langdon CJ (2004) Enhanced production of Pacific dulse (Palmaria mollis) for co-culture with abalone in a land-based system: effects of stocking density, light, salinity, and temperature. Aquaculture 235:471–488

    Article  Google Scholar 

  • Ding LL, Liu L, Zou DH (2013) Effects of different temperature and CO2 concentrations on the growth and photosynthetic response to temperature in Porphyra haitanensis. Ecol Sci 32:151–157

    Google Scholar 

  • Gao K, McKinley KR (1994) Use of macroalgae for marine biomass production and CO2 remediation: a review. J Appl Phycol 6:45–60

    Article  Google Scholar 

  • Gao KS, Aruga Y, Asada K, Kiyohara M (1993) Influence of enhanced CO2 on growth and photosynthesis of the red algae Gracilaria sp and G.chilensis. J Appl Phycol 5:563–571

    Article  CAS  Google Scholar 

  • Gao K, Beardall J, Häder DP, Hall-Spencer JM, Gao G, Hutchins DA (2019) Effects of ocean acidification on marine photosynthetic organisms under the concurrent influences of warming, UV radiation, and deoxygenation. Front Mar Sci 6:322

    Article  Google Scholar 

  • Gaylord B, Rosman JH, Reed DC (2007) Spatial patterns of flow and their modification within and around a giant kelp forest. Limnol Oceanogr 52:1838–1852

    Article  Google Scholar 

  • Gordillo FJL, Niell FX, Figueroa FL (2001) Non-photosynthetic enhancement of growth by high CO2 level in the nitrophilic seaweed Ulva rigida C. Agardh (Chlorophyta). Planta 213:64–70

    Article  CAS  Google Scholar 

  • Harrison PJ (1988) Determining phosphate uptake rates of phytoplankton. In: Lobban C S, Chapman D J, Klemer B P. (Eds.) Experimental Phycology: A Laboratory Manual. Cambridge University Press, Cambridge pp 186-195

    Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (2001) Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge 892 p

  • Hurd CL (2000) Water motion, marine macroalgal physiology and production. J Phycol 36:453–472

    Article  CAS  Google Scholar 

  • Hurtado AQ, Critchley AT, Trespoey A (2008) Growth and carrageenan quality of Kappaphycus striatum var. sacol grown at different stocking densities, duration of culture and depth. J Appl Phycol 20:101–105

    Article  Google Scholar 

  • Jiang HX, Gao KS, Helbling EW (2008) UV-absorbing compounds in Porphyra haitanensis (Rhodophyta) with special reference to effects of desiccation. J Appl Phycol 20:387–395

    Article  Google Scholar 

  • Jiang H, Zou DH, Lou WY, Ye CP (2017) Effects of stocking density and decreased carbon supply on the growth and photosynthesis in the farmed seaweed, Pyropia haitanensis (Bangiales, Rhodophyta). J Appl Phycol 29:3057–3065

    Article  CAS  Google Scholar 

  • Liu L, Ding LL, Chen WZ, Zou DH (2013) The combined effects of increasing CO2 concentrations and different temperatures on the growth and chlorophyll fluorescence in Porphyra haitanensis (Bangiales, Rhodophyta). Acta Ecol Sin 33:3916–3924

    Article  CAS  Google Scholar 

  • Mata L, Silva J, Schuenhoff A (2006) The effects of light and temperature on the photosynthesis of the Asparagopsis armata tetrasporophyte (Falkenbergia rufolanosa), cultivated in tanks. Aquaculture 252:12–19

    Article  CAS  Google Scholar 

  • Mercado JM, Niell FX, Figueroa FL (1997) Regulation of the mechanism for HCO3- use by the inorganic carbon level in Porphyra leucosticta Thur. in Le Jolis (Rhodophyta). Planta 201:319–325

    Article  CAS  Google Scholar 

  • Mercado JM, Javier F, Gordillo L, Niell FX, Figueroa FL (1999) Effects of different levels of CO2 on photosynthesis and cell components of the red alga Porphyra leucosticta. J Appl Phycol 11:455–461

    Article  Google Scholar 

  • Parsons TR, Maita Y, Lalli CM (1984) A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, Oxford

    Google Scholar 

  • Pelejero C, Calvo EVA, Hoegh-Guldberg O (2010) Paleoperspectives on ocean acidification. Trends Ecol Evol 25:332–344

    Article  Google Scholar 

  • Sabine CL, Feely RA (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371

    Article  CAS  Google Scholar 

  • Svensson CJ, Pavia H, Toth GB (2007) Do plant density, nutrient availability, and herbivore grazing interact to affect phlorotannin plasticity in the brown seaweed Ascophyllum nodosum. Mar Biol 151:2177–2181

    Article  Google Scholar 

  • Taylor AR, Chrachri A, Wheeler G, Goddard H, Brownlee C (2011) A voltage-gated H+ channel underlying pH homeostasis in calcifying coccolithophores. PLoS Biol 9:e1001085

    Article  CAS  Google Scholar 

  • Unal D, Tuney I, Sukatar A (2008) The role of external polyamines on photosynthetic responses, lipid peroxidation, protein and chlorophyll a content under the UV-A (352 nm) stress in Physcia semipinnata. J Photochem Photobiol B 90:64–68

    Article  CAS  Google Scholar 

  • Viaroli P, Naldi M, Bondavalli C (1996) Growth of the seaweed Ulva rigida C. Agardh in relation to biomass densities, internal nutrient pools and external nutrient supply in the Sacca di Goro lagoon (Northern Italy). Hydrobiologia 329:93–103

    Article  CAS  Google Scholar 

  • Webber AN, Nie GY, Long SP (1994) Acclimation of photosynthetic proteins to rising atmospheric CO2. Photosynth Res 39:413–425

    Article  CAS  Google Scholar 

  • Wu H, Zou D, Gao K (2008) Impacts of increased atmospheric CO2 concentration on photosynthesis and growth of micro- and macro-algae. Science China C 51:1144–1150

    Article  Google Scholar 

  • Zou D (2002) Photosynthetic bicarbonate utilization in Porphyra haitanensis (Bangiales, Rhodophyta). Chin Sci Bull 47:19

    Google Scholar 

  • Zou DH (2005) Effects of elevated atmospheric CO2 on growth, photosynthesis and nitrogen metabolism in the economic brown seaweed, Hizikia fusiforme (Sargassaceae, Phaeophyta). Aquaculture 250:726–735

    Article  CAS  Google Scholar 

  • Zou DH (2014) The effects of severe carbon limitation on the green seaweed, Ulva conglobata (Chlorophyta). J Appl Phycol 26:2417–2424

    Article  CAS  Google Scholar 

  • Zou DH, Gao KS (2009) Effects of elevated CO2 on the red seaweed Gracilaria lemaneiformis (Gigartinales, Rhodophyta) grown at different irradiance levels. Phycologia 48:510–517

    Article  CAS  Google Scholar 

  • Zou DH, Gao KS, Xia JR (2003) Photosynthetic utilization of inorganic carbon in the economic brown alga, Hizikia fusiforme (Sargassaceae) from the South China Sea. J Phycol 36:1095–1100

    Article  Google Scholar 

  • Zou DH, Gao KS, Luo HJ (2011) Short- and long-term effects of elevated CO2 on photosynthesis and respiration in the marine macroalga Hizikia fusiformis (Sargassaceae, Phaeophyta) grown at low and high N supplies. J Phycol 47:87–97

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Science and Technology Planning Project of Guangdong Province, China (Nos. 2019B121202001 and 2018B030311029), Guangzhou Science and Technology Project (No. 201904010287), and Hunan Provincial Natural Science Foundation of China (Nos. 2020JJ5316 and 2020JJ5813).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinghui Zou.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Deng, Y., Zou, D. et al. Growth densities regulate the response to elevated CO2 in a farmed seaweed Pyropia haitanensis (Bangiales, Rhodophyta). J Appl Phycol 33, 2359–2366 (2021). https://doi.org/10.1007/s10811-021-02458-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-021-02458-4

Keywords

Navigation