Skip to main content

Advertisement

Log in

In vitro antifungal activity screening of beach-cast seaweeds collected in Yucatan, Mexico

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The use of natural products in fungal disease control is an approach to reduce the negative impact of synthetic fungicides in agriculture and the environment. Although there are many alternatives, beach-cast seaweeds are a natural source of novel compounds that can be useful against fungal phytopathogens. In this study, aqueous extracts (AEs) of five species of beach-cast seaweeds, Agardhiella subulata, Bryothamnion triquetrum, Codium isthmocladum, Dictyota dichotoma, and Halymenia floresii, collected in Yucatan, Mexico, were tested against Fusarium oxysporum, Colletotrichum gloeosporioides, and Pseudocercospora fijiensis by dilution assays. From these, only H. floresii AE showed antifungal activity against P. fijiensis (13.7 mg mL−1). Furthermore, the protein fraction isolated from this AE was also active against P. fijiensis at 0.625 μg mL−1. The chromatographic profile of H. floresii AE with antifungal activity showed three major peaks at retention times (tR) 1.6, 23.0, and 23.9 min, respectively. Analysis of solids in H. floresii AE after lyophilization revealed a possibly sulfated polysaccharide (carrageenan) derivative. The toxicity analysis on Artemia salina showed that this aqueous extract is safe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Agrios GN (2005) Plant pathology, 5th edn. Elsevier Academic Press, New York

    Google Scholar 

  • Ambika S, Sujatha K (2015) Antifungal activity of aqueous and ethanol extracts of seaweeds against sugarcane red rot pathogen (Colletotrichum falcatum). Sci Res Essays 10:232–235

    Article  Google Scholar 

  • Anis M, Ahmad N (2016) Plant tissue culture: propagation, conservation and crop improvement. Springer, Singapore

    Book  Google Scholar 

  • Batool A, Menaa F (2020) Concentration and purification of seaweeds components by chromatography methods. In: Torres MD, Kraan S, Dominguez H (eds) Advances in green chemistry sustainable seaweed technologies, cultivation biorefinery, and applications. Elsevier, New York, pp 315–370

    Google Scholar 

  • Blatt WF, Feinberg MP, Hopfenberg HB (1965) Protein solutions: concentration by a rapid method. Science 150:224–225

    Article  CAS  Google Scholar 

  • Blum B, Waldner M, Olaya G, Cohen Y, Gisi U, Sierotzki H (2011) Resistance mechanism to carboxylic acid amide fungicides in the cucurbit downy mildew pathogen Pseudoperonospora cubensis. Pest Manag Sci 67:1211–1214

    Article  CAS  Google Scholar 

  • Fernández-Ortuño D, Toréz JA, de Vicente A, Pérez-Garcıa A (2008) Mechanisms of resistance to QoI fungicides in phytopathogenic fungi. Int Microbiol 11:1–9

    PubMed  Google Scholar 

  • FRAC (2017) List of plant pathogenic organisms resistant to disease control agents. www. frac.info

  • Freile-Pelegrin Y, Robledo D, Chan-Bacab MJ, Ortega-Morales BO (2008) Antileishmanial properties of tropical marine algae extracts. Fitoterapia 79:374–377

    Article  CAS  Google Scholar 

  • Freile-Pelegrín, Azamar JA, Robledo D (2011) Preliminary characterization of carrageenan from the red seaweed Halymenia floresii. J Aquat Food Prod Technol 20:73–83

    Article  Google Scholar 

  • Gómez-Ordoñez E, Ruperéz P (2011) FTIR-ATR spectroscopy as a tool for polysaccharide identification in edible brown and red seaweeds. Food Hydrocoll 25:1514–1520

    Article  Google Scholar 

  • Guiry MD, Guiry GM (2016) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. https://www.algaebase.org. Accessed 23 October 2016

  • Hamed SM, El-Rhman AAA, Abdel-Raouf N, Ibraheem IBM (2018) Role of marine macroalgae in plant protection & improvement for sustainable agriculture technology. Beni-Suef Univ J Appl Sci 7:104–110

    Google Scholar 

  • Harnedy AP, FitzGerald RJ (2011) Bioactive proteins peptides, and amino acids from macroalgae. J Phycol 47:218–232

    Article  CAS  Google Scholar 

  • Hawkins NJ, Bass C, Dixon A, Neve P (2019) The evolutionary origins of pesticide resistance. Biol Rev 94:135–155

    Article  Google Scholar 

  • Hernández-Herrera RM, Virgen-Calleros G, Ruiz-López M, Zañudo-Hernández J, Délano-Frier JP, Sánchez-Hernández C (2014) Extracts from green and brown seaweeds protect tomato (Solanum lycopersicum) against the necrotrophic fungus Alternaria solani. J Appl Phycol 26:1607–1614

    Article  Google Scholar 

  • Kausalya M, Narasimha Rao GN (2015) Antimicrobial activity of marine algae. J Algal Biomass Util 6:78–87

    Google Scholar 

  • Khan SA, Abid M, Hussain F (2017) Antifungal activity of aqueous and methanolic extracts of some seaweeds against common soil-borne plant pathogenic fungi. Pak J Bot 49:1211–1216

    CAS  Google Scholar 

  • Kruger NJ (1994) The Bradford method for protein quantitation. In: Walker JM (ed) Basic protein and peptide protocols. Methods in Molecular Biology, vol 32. Humana Press, Totowa, pp 15–21

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Lenis VLA, Benítez BR, Peña Salamanca E, Chito Trujillo DM (2007) Extracción, separación y elucidación estructural de dos metabolitos secundarios del alga marina Bostrychia calliptera. Sci et Technica XIII:97–102

    Google Scholar 

  • Littler DS, Littler MM, Bucher EK, Norris JN (2000) Caribbean reef plants. Off Shore Graphics Inc, FL

    Google Scholar 

  • Melo VMM, Medeiros DA, Rios FJB, Castelar LIM, De FFU, Carvalho A (1997) Antifungal properties of proteins (agglutinins) from the red alga Hypnea musciformis (Wulfen) Lamouroux. Bot Mar 40:281–284

  • Meyer BN, Ferrigni NR, Putnam JE, Jacobsen LB, Nichols DJ, McLaughlin JL (1982) Brine shrimp: a convenient general bioassay for active plant constituents. Planta Med 45:31–34

    Article  CAS  Google Scholar 

  • Michereff SJ (2013) Etiología y epidemiología de las especies (basado en el análisis filogenético) de Colletotrichum y Botryosphaeriaceae de papaya y mango. XL Congreso Nacional y XV Congreso Internacional de la Sociedad Mexicana de Fitopatología. Rev Mex Fitopatol 31:S2–S3

    Google Scholar 

  • Mukherjee A, Patel JS (2019) Seaweed extract: biostimulator of plant defense and plant productivity. Int J Environ Sci Technol 17:553–558

    Article  Google Scholar 

  • Ngo TV, Scarlett CJ, Bowyer MC, Ngo PD, Vuong QV (2017) Impact of different extraction solvents on bioactive compounds and antioxidant capacity from the root of Salacia chinensis L. J Food Qual 2017:9305047

    Article  Google Scholar 

  • Peraza-Echeverría L, Rodríguez-García CM, Zapata-Salazar DM (2008) A rapid method to produce profusely in vitro conidial of Mycosphaerella fijiensis. Australas Pl Pathol 37:460–463

    Article  Google Scholar 

  • Peraza-Sánchez SR, Poot-Kantún S, Torres-Tapia LW, May-Pat F, Simá-Polanco P, Cedillo-Rivera R (2005) Screening of native plants from Yucatan for anti–Giardia lamblia activity. Pharm Biol 43:594–598

    Article  Google Scholar 

  • Pethsangave DA, Wadekar PH, Khose RV, Some S (2020) Super-hydrophobic carrageenan cross-linked graphene sponge for recovery of oil and organic solvent from their water mixtures. PolymTest 90:106743

    CAS  Google Scholar 

  • Price CL, Parker JE, Warrilow AGS, Kelly DE, Kelly SL (2015) Azole fungicides-understanding resistance mechanisms in agricultural fungal pathogens. Pest Manag Sci 71:1054–1058

    Article  CAS  Google Scholar 

  • Robledo D, Freile-Pelegrin Y (1997) Chemical and mineral composition of six potentially edible seaweed species from Yucatan. Bot Mar 40:301–306

    Article  CAS  Google Scholar 

  • Rodríguez-García CM, Ruiz-Ruiz JC, Peraza-Echeverría L, Peraza-Sánchez SR, Torres-Tapia LW, Pérez-Brito D, Tapia-Tussell R, Herrera-Chalé FG, Segura-Campos MR, Quijano-Ramayo A, Ramón-Sierra JM, Ortiz-Vázquez E (2019) Antioxidant, antihypertensive, anti-hyperglycemic, and antimicrobial activity of aqueous extracts from twelve native plants of the Yucatan coast. PLoS One 14:e0213493

    Article  Google Scholar 

  • Ruiz-Ruiz JC, Peraza-Echeverría L, Soto-Hernández R, San Miguel-Chávez R, Pérez-Brito D, Tapia-Tussell R, Ortiz-Vázquez E, Rodríguez-García CM (2016) Diospyros cuneata inhibition of Fusarium oxysporum: aqueous extract and its encapsulation by ionic gelation. J Plant Pathol Microbiol 7:332

    Google Scholar 

  • Salavarría E, Benavente M, Kodaka PG (2014) Histology of Macrocystis pyrifera (Linnaeus) C. Agardh 1820 (Phaeophyceae: Laminariales) in the central coast of Perú. Arnaldoa 21:69–80

    Google Scholar 

  • Shad S, Bashir N, Jadoon QA (2015) Analysis of pesticides in vegetables, degradation and its side effects: a review paper. Am Euras J Agric Environ Sci 15:24–28

    Google Scholar 

  • Silva P, Fernandes C, Barros L, Ferreira ICFR, Ferreira L, Gonçalves T (2018) The antifungal activity of extracts of Osmundea pinnatifida, an edible seaweed, indicates its usage as a safe environmental fungicide or as a food additive preventing post-harvest fungal food contamination. Food Funct 9:6187–6195

    Article  CAS  Google Scholar 

  • Soares F, Fernandes C, Silva P, Pereira L, Gonçalves T (2011) Antifungal activity of carrageenan extracts from the red alga Chondracanthus teedei var. lusitanicus. J Appl Phycol 28:2991–2998

    Article  Google Scholar 

  • Tang J, Zhao M, Wang Y, Kang G, Wu J, Zheng M, Peng S (2011) One single HPLC-PDA/(-) ESI-MS/MS analysis to simultaneously determine 30 components of the aqueous extract of Rabdosia rubescens. J Chromatogr B 879:2783–2793

    Article  CAS  Google Scholar 

  • Tapia-Tussell R, Lappe P, Ulloa M, Quijano-Ramayo A, Caceres-Farfan M, Larque-Saavedra A, Perez-Brito D (2006) A rapid and simple method for DNA extraction from yeasts and fungi isolated from Agave fourcroydes. Mol Biotechnol 33:67–69

  • Truong DH, Nguyen DH, Ta NTA, Bui AV, Do TH, Nguyen HC (2019) Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and in vitro anti-inflammatory activities of Severinia buxifolia. J Food Qual 2019:8178294–8178299

    Article  Google Scholar 

  • Turquois T, Acquistapace S, Vera FA, Welti DH (1996) Composition of carrageenan blends inferred from 13C-NMR and infrared spectroscopic analysis. Carbohydr Polym 31:269–278. https://doi.org/10.1016/s0144-8617(96)00031-8

  • Worku M, Sahe S (2018) Review on disease management practice of tomato wilt caused Fusarium oxysporum in case of Ethiopia. J Plant Pathol Microbiol 9:11

    Article  Google Scholar 

  • Wynne MJ (1986) A checklist of benthic marine algae of the tropical and subtropical western Atlantic. Can J Bot 64:2239–2281

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Ileana Ortegón-Aznar for confirming the identification of the species; Felipe Barredo-Pool, Silvia Hernández-Aguilar, and Roger Sulub-Tun, for their technical support. Also, thanks to National Council for Science and Technology (CONACYT), for the scholarship (# 612342) of Mauricio Gómez-Hernández.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia Mónica Rodríguez-García.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez-Hernández, M., Rodríguez-García, C.M., Peraza-Echeverría, L. et al. In vitro antifungal activity screening of beach-cast seaweeds collected in Yucatan, Mexico. J Appl Phycol 33, 1229–1237 (2021). https://doi.org/10.1007/s10811-021-02384-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-021-02384-5

Keywords