Skip to main content
Log in

Effects of extracted polysaccharides from a Chlorella vulgaris biomass on expression of interferon-γ and interleukin-2 in chicken peripheral blood mononuclear cells

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Polysaccharides isolated from algae species have been shown to have various biological properties including immunomodulatory activities. In the present study, the effects of water-extractable polysaccharides from a Chlorella vulgaris biomass on the expression of immunostimulatory cytokines by chicken peripheral blood mononuclear cells (PBMCs) were evaluated. Extracted polysaccharides were fractionated using a DEAE Sepharose FF column yielding two fractions (F1 and F2). Crude polysaccharide (CP) and fractions mostly consisted of carbohydrates (71.9 to 82.9%), protein (6 to 13.8%), and uronic acids (4.8 to 7.9%). Monosaccharide constituents were predominantly galactose (13.1 to 53.2%), glucose (15.3 to 38.6%), mannose (5.5 to 11.2%), arabinose (5.6 to 20.7%), and rhamnose (5.8 to 14.7%). Crude, F1, and F2 polysaccharides contained 1 or 2 sub-fractions with average molecular weight ranging from 19.2 to 161.1 × 103 g mol−1. Evaluation of immunostimulatory activities of CP and fractions (200 to 1000 μg mL−1) revealed significant effects on PBMC interferon-γ (IFN-γ) and interleukin-2 (IL-2) expression. The most potent immunostimulating fraction F1 was consisted of a homogeneous polysaccharide with relatively low molecular weight (23.9 × 103 g mol−1), low structural compactness, and mixed linkages of (→1)-, (1→3)-, (1→3,6)-galactopyranose and -glucopyranose residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • An H-J, Rim H-K, Lee J-H, Seo M-J, Hong J-W, Na-Hyung K, Myung NY, Moon P-D, Choi IY, Na H, Kim SJ, Jeong JH, Park H-S, Han JG, Um JY, Hong S-B (2008) Effect of Chlorella vulgaris on immune-enhancement and cytokine production in vivo and in vitro. Food Sci Biotechnol 17:953–958

    CAS  Google Scholar 

  • Barboríková J, Šutovská M, Kazimierová I, Jošková M, Fraňová S, Kopecký J, Capek P (2019) Extracellular polysaccharide produced by Chlorella vulgaris–chemical characterization and anti-asthmatic profile. Int J Biol Macromol 135:1–11

    Article  Google Scholar 

  • Barjesteh N, Behboudi S, Brisbin JT, Villanueva AI, Nagy É, Sharif S (2014) TLR ligands induce antiviral responses in chicken macrophages. PLoS One 9:e105713

    Article  Google Scholar 

  • Basily HS, Nassar MM, El Diwani GI, El-Enin SAA (2018) Extraction of algal lipid as a natural cosmetic component. Egypt Pharm J 17:13

    Article  Google Scholar 

  • Ciucanu I, Kerek F (1984) A simple and rapid method for the permethylation of carbohydrates. Carbohydr Res 131:209–217

    Article  CAS  Google Scholar 

  • Dodgson KS, Price RG (1962) A note on the determination of the ester sulphate content of sulphated polysaccharides. Biochem J 84:106–110

    Article  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Ewart HS, Bloch O, Girouard GS, Kralovec J, Barrow CJ, Ben-Yehudah G, Suárez ER, Rapoport MJ (2007) Stimulation of cytokine production in human peripheral blood mononuclear cells by an aqueous Chlorella extract. Planta Med 73:762–768

    Article  CAS  Google Scholar 

  • Filisetti-Cozzi TMCC, Carpita NC (1991) Measurement of uronic acids without interference from neutral sugars. Anal Biochem 197:157–162

    Article  CAS  Google Scholar 

  • Hsu H-Y, Jeyashoke N, Yeh C-H, Song YJ, Hua K-F, Chao LK (2009) Immunostimulatory bioactivity of algal polysaccharides from Chlorella pyrenoidosa activates macrophages via Toll-like receptor 4. J Agric Food Chem 58:927–936

    Article  Google Scholar 

  • Jeong J, Kim WH, Yoo J, Lee C, Kim S, Cho JH, Jang HK, Kim DW, Lillehoj HS, Min W (2012) Identification and comparative expression analysis of interleukin 2/15 receptor β chain in chickens infected with E. tenella. PloS One 7:e37704

    Article  CAS  Google Scholar 

  • Kaiser MG, Cheeseman JH, Kaiser P, Lamont SJ (2006) Cytokine expression in chicken peripheral blood mononuclear cells after in vitro exposure to Salmonella enterica serovar Enteritidis. Poult Sci 85:1907–1911

    Article  CAS  Google Scholar 

  • Kang HK, Park SB, Kim CH (2017) Effects of dietary supplementation with a Chlorella by-product on the growth performance, immune response, intestinal microflora and intestinal mucosal morphology in broiler chickens. J Anim Physiol Anim Nutr (Berl) 101:208–214

    Article  CAS  Google Scholar 

  • Karnjanapratum S, Tabarsa M, Cho M, You S (2012) Characterization and immunomodulatory activities of sulfated polysaccharides from Capsosiphon fulvescens. Int J Biol Macromol 51:720–729

    Article  CAS  Google Scholar 

  • Kogut MH, Rothwell L, Kaiser P (2003) Priming by recombinant chicken interleukin-2 induces selective expression of IL-8 and IL-18 mRNA in chicken heterophils during receptor-mediated phagocytosis of opsonized and nonopsonized Salmonella enterica serovar enteritidis. Mol Immunol 40:603–610

    Article  CAS  Google Scholar 

  • Konishi F, Tanaka K, Kumamoto S, Hasegawa T, Okuda M, Yano I, Yoshikai Y, Nomoto K (1990) Enhanced resistance against Escherichia coli infection by subcutaneous administration of the hot-water extract of Chlorella vulgaris in cyclophosphamide-treated mice. Cancer Immunol Immunother 32:1–7

    Article  CAS  Google Scholar 

  • Kralovec JA, Metera KL, Kumar JR, Watson LV, Girouard GS, Guan Y, Carr RI, Barrow CJ, Ewart HS (2007) Immunostimulatory principles from Chlorella pyrenoidosa—Part 1: isolation and biological assessment in vitro. Phytomedicine 14:57–64

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Mao TK, Van de Water J, Gershwin ME (2000) Effect of Spirulina on the secretion of cytokines from peripheral blood mononuclear cells. J Med Food 3:135–140

    Article  CAS  Google Scholar 

  • Mao WJ, Fang F, Li HY, Qi XH, Sun HH, Chen Y, Guo SD (2008) Heparinoid-active two sulfated polysaccharides isolated from marine green algae Monostroma nitidum. Carbohydr Polym 74:834–839

    Article  CAS  Google Scholar 

  • McMillan JR, Watson IA, Ali M, Jaafar W (2013) Evaluation and comparison of algal cell disruption methods: microwave, waterbath, blender, ultrasonic and laser treatment. Appl Energy 103:128–134

    Article  Google Scholar 

  • Pugh N, Ross SA, ElSohly HN, ElSohly MA, Pasco DS (2001) Isolation of three high molecular weight polysaccharide preparations with potent immunostimulatory activity from Spirulina platensis, Aphanizomenon flos-aquae and Chlorella pyrenoidosa. Planta Med 67:737–742

    Article  CAS  Google Scholar 

  • Pumas P, Pumas C (2014) Proximate composition, total phenolics content and antioxidant activities of microalgal residue from biodiesel production. Maejo Int J Sci Technol 8:122

    Google Scholar 

  • Qi J, Kim SM (2017) Characterization and immunomodulatory activities of polysaccharides extracted from green alga Chlorella ellipsoidea. Int J Biol Macromol 95:106–114

    Article  CAS  Google Scholar 

  • Řezanka T, Sigler K (2007) Structural analysis of a polysaccharide from Chlorella kessleri by means of gas chromatography—mass spectrometry of its saccharide alditols. Folia Microbiol 52:246–252

    Article  Google Scholar 

  • Safi C, Zebib B, Merah O, Pontalier PY, Vaca-Garcia C (2014) Morphology, composition, production, processing and applications of Chlorella vulgaris: a review. Renew Sust Energ Rev 35:265–278

    Article  Google Scholar 

  • SAS Institute (2007) SAS/STAT user’s guide . Version 9.2. SAS Institute Inc., Cary

    Google Scholar 

  • Sevag MG, Lackman DB, Smolens J (1938) The isolation of the components of streptococcal nucleoproteins in serologically active form. J Biol Chem 124:0425–0436

    Article  CAS  Google Scholar 

  • Sheng J, Yu F, Xin Z, Zhao L, Zhu X, Hu Q (2007) Preparation, identification and their antitumor activities in vitro of polysaccharides from Chlorella pyrenoidosa. Food Chem 105:533–539

    Article  CAS  Google Scholar 

  • Shi Y, Sheng J, Yang F, Hu Q (2007) Purification and identification of polysaccharide derived from Chlorella pyrenoidosa. Food Chem 103:101–105

    Article  CAS  Google Scholar 

  • Suárez ER, Kralovec JA, Noseda MD, Ewart HS, Barrow CJ, Lumsden MD, Grindley TB (2005) Isolation, characterization and structural determination of a unique type of arabinogalactan from an immunostimulatory extract of Chlorella pyrenoidosa. Carbohydr Res 340:1489–1498

    Article  Google Scholar 

  • Suárez ER, Bugden SM, Kai FB, Kralovec JA, Noseda MD, Barrow CJ, Grindley TB (2008) First isolation and structural determination of cyclic β-(1→2)-glucans from an alga, Chlorella pyrenoidosa. Carbohydr Res 343:2623–2633

    Article  Google Scholar 

  • Suárez ER, Kralovec JA, Grindley TB (2010) Isolation of phosphorylated polysaccharides from algae: the immunostimulatory principle of Chlorella pyrenoidosa. Carbohydr Res 345:1190–1204

    Article  Google Scholar 

  • Tabarsa M, Han JH, Kim CY, You SG (2012) Molecular characteristics and immunomodulatory activities of water-soluble sulfated polysaccharides from Ulva pertusa. J Med Food 15:135–144

    Article  CAS  Google Scholar 

  • Tabarsa M, Shin IS, Lee JH, Surayot U, Park W, You S (2015) An immune-enhancing water-soluble α-glucan from Chlorella vulgaris and structural characteristics. Food Sci Biotechnol 24:1933–1941

    Article  CAS  Google Scholar 

  • Telles CBS, Mendes-Aguiar C, Fidelis GP, Frasson AP, Pereira WO, Scortecci KC, Camara RBG, Nobre LTDB, Costa LS, Tasca T, Rocha HAO (2018) Immunomodulatory effects and antimicrobial activity of heterofucans from Sargassum filipendula. J Appl Phycol 30:569–578

    Article  CAS  Google Scholar 

  • Tzianabos AO (2000) Polysaccharide immunomodulators as therapeutic agents: structural aspects and biologic function. Clin Microbiol Rev 13:523–533

    Article  CAS  Google Scholar 

  • Verma A, Prasad KN, Singh AK, Nyati KK, Gupta RK, Paliwal VK (2010) Evaluation of the MTT lymphocyte proliferation assay for the diagnosis of neurocysticercosis. J Microbiol Methods 81:175–178

    Article  CAS  Google Scholar 

  • You S, Lim S (2000) Molecular characterization of corn starch using an aqueous HPSEC-MALLS-RI system under various dissolution and analytical conditions. Cereal Chem 77:303–308

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Iran National Science Foundation (INSF).

Author information

Authors and Affiliations

Authors

Contributions

Sara Mirzaie: conceptualization, methodology, investigation, writing original draft. Mahdi Tabarsa: methodology; writing, review, and editing; resources. Maliheh Safavi: investigation, resources

Corresponding author

Correspondence to Sara Mirzaie.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethics approval

Animal procedure was approved by the institutional Animal Care Committee of the Department of Agriculture, Iranian Research Organization for Science and Technology.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 167 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzaie, S., Tabarsa, M. & Safavi, M. Effects of extracted polysaccharides from a Chlorella vulgaris biomass on expression of interferon-γ and interleukin-2 in chicken peripheral blood mononuclear cells. J Appl Phycol 33, 409–418 (2021). https://doi.org/10.1007/s10811-020-02301-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-020-02301-2

Keywords

Navigation