Skip to main content
Log in

Regulatory effect of gibberellic acid (GA3) on the biomass productivity and some metabolites of a marine microalga, Isochrysis galbana

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The application of phytohormones is an effective and economical way to accelerate biomass growth and the synthesis of valuable metabolites in the microalgae industry. In this study different levels of gibberellic acid (GA3), including 0 (control), 1, 2, 4, and 6 mg L−1, were added to the growth medium of Isochrysis galbana to evaluate the growth performance, metabolites (i.e., chlorophyll a, protein, lipid, carbohydrate, and ash), and fatty acids profile, compared with the control group (0 mg L−1 GA3) during a 14-day experiment. The highest cell number (14.2 × 106 cells mL−1) and the lowest doubling time (4.31 day) were obtained in 4 mg L−1 GA3 (P < 0.05) and the highest specific growth rate was recorded in the treatments with GA3 at 2 and 4 mg L−1. The production of chlorophyll a was elevated by increasing GA3 concentration up to 4 mg L−1, while the lowest value was recorded in 6 mg L−1 GA3 (P < 0.05). The highest level of protein was measured in 1, 2, and 4 mg L−1 GA3, while the lowest value was obtained in the control group (P < 0.05). In addition, the lipid content of the microalgae treated with different GA3 concentrations was significantly increased compared with the control group. The highest polyunsaturated fatty acid (PUFA) content was achieved using GA3 at 6 mg L−1, while the highest saturated and monounsaturated fatty acids were determined in 2 mg L−1 GA3. The findings showed that GA3 at 4 mg L−1 could effectively improve the growth and biosynthesis of most metabolites in I. galbana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • AOAC (2000) Approved methods of the American Association of Cereal Chemists, 17th edn. American Association of Cereal Chemist, Inc, USA

    Google Scholar 

  • Arora S, Mishra G (2019) Biochemical modulation of Monodopsis subterranea (Eustigmatophyceae) by auxin and cytokinin enhances eicosapentaenoic acid productivity. J Appl Phycol 31:3441–3452

    Article  CAS  Google Scholar 

  • Bajguz A, Piotrowska-Niczyporuk A (2013) Synergistic effect of auxins and brassinosteroids on the growth and regulation of metabolite content in the green alga Chlorella vulgaris (Trebouxiophyceae). Plant Biochem Physiol 71:290–297

    Article  CAS  Google Scholar 

  • Bonfanti C, Cardoso C, Afonso C, Matos J, Garcia T, Tanni S, Bandarra N (2018) Potential of microalga Isochrysis galbana: bioactivity and bioaccessibility. Algal Res 29:242–248

    Article  Google Scholar 

  • Cohen Z, Norman HA, HeimerY M (1993) Potential use of substituted pyridazinones for selecting polyunsaturated fatty acid overproducing cell lines of algae. Phytochemistry 32:259–264

    Article  CAS  Google Scholar 

  • Converti A, Casazza AA, Ortiz EY, Perego P, Borghi MD (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process 48:1146–1151

    Article  CAS  Google Scholar 

  • De Jesus Raposo MF, de Morais RMSC (2013) Influence of the growth regulators kinetin and 2, 4-D on the growth of two chlorophyte microalgae, Haematococcus pluvialis and Dunaliella salina. J Basic Appl Sci 9:302–308

  • Ding W, Peng J, Zhao Y, Zhao P, Xu J-W, Li T, Yu X (2019) A strategy for boosting astaxanthin accumulation in green microalga Haematococcus pluvialis by using combined diethyl aminoethyl hexanoate and high light. J Appl Phycol 31:171–181

    Article  CAS  Google Scholar 

  • Du K, Tao H, Wen X, Geng Y, Li Y (2015) Enhanced growth and lipid production of Chlorella pyrenoidosa by plant growth regulator GA3. Fresenius Environ Bull 24:3414–3419

  • Durmaz YAŞAR, Donato M, Monteiro M, Gouveia L, Nunes ML, Pereira TG, Gökpmar S, Bandarra NM (2009) Effect of temperature on α-tocopherol, fatty acid profile, and pigments of Diacronema vlkianum (Haptophyceae). Aquacult Int 17:391–399

    Article  CAS  Google Scholar 

  • Falkowska M, Pietryczuk A, Piotrowska A, Bajguz A, Grygoruk A, Czerpak R (2011) The effect of gibberellic acid (GA3) on growth, metal biosorption and metabolism of the green algae Chlorella vulgaris (Chlorophyceae) Beijerinck exposed to cadmium and lead stress. Pol J Environ Stud 20:53–59

  • Feng D, Chen Z, Xue S, Zhang W (2011) Increased lipid production of the marine oleaginous microalgae Isochrysis zhangjiangensis (Chrysophyta) by nitrogen supplement. Bioresour Technol 102:6710–6716

    Article  CAS  PubMed  Google Scholar 

  • Folch J, Lees M, Stanley GS (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

  • Guillard RR, Ryther JH (1962) Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239

    Article  CAS  PubMed  Google Scholar 

  • Han X, Zeng H, Bartocci P, Fantozzi F, Yan Y (2018) Phytohormones and effects on growth and metabolites of microalgae: a review. Fermentation 4:25

    Article  CAS  Google Scholar 

  • Han SF, Jin W, Abomohra AE-F, Zhou X, Tu R, Chen C, Chen H, Gao S-h, Wang Q (2019) Enhancement of lipid production of Scenedesmus obliquus cultivated in municipal wastewater by plant growth regulator treatment. Waste Biomass Valorization 10:2479–2485

    Article  CAS  Google Scholar 

  • Hunt RW, Chinnasamy S, Das KC (2011) The effect of naphthalene-acetic acid on biomass productivity and chlorophyll content of green algae, coccolithophore, diatom, and cyanobacterium cultures. Appl Biochem Biotechnol 164:1350–1365

    Article  CAS  PubMed  Google Scholar 

  • Hussain S, Zhang JH, Zhong C, Zhu LF, Cao XC, Yu SM, Bohr JA, Hu JJ, Jin QY (2017) Effects of salt stress on rice growth, development characteristics, and the regulating ways: a review. J Integr Agric 16:2357–2374

    Article  CAS  Google Scholar 

  • Iqbal J, Theegala C (2013) Microwave assisted lipid extraction from microalgae using biodiesel as co-solvent. Algal Res 2:34–34

    Article  Google Scholar 

  • Jiang L, Luo S, Fan X, Yang Z, Guo R (2011) Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2. Appl Energy 88:3336–3341

    Article  CAS  Google Scholar 

  • Kawaroe M, Hwangbo J, Augustine D, Putra HA (2015) Comparison of density, specific growth rate, biomass weight, and doubling time of microalgae Nannochloropsis sp. cultivated in open raceway pond and photobioreactor. AACL Bioflux 8:740–750

    Google Scholar 

  • Lin B, Ahmed F, Du H, Li Z, Yan Y, Huang Y, Cui M, Yin Y, Li B, Wang M (2018) Plant growth regulators promote lipid and carotenoid accumulation in Chlorella vulgaris. J Appl Phycol 30:1549–1561

    Article  CAS  Google Scholar 

  • Liu J, Qiu W, Song Y (2016) Stimulatory effect of auxins on the growth and lipid productivity of Chlorella pyrenoidosa and Scenedesmus quadricauda. Algal Res 18:273–280

    Article  Google Scholar 

  • Lourenco SO, Barbarino E, Lavín PL, Lanfer Marquez UM, Aidar E (2004) Distribution of intracellular nitrogen in marine microalgae: calculation of new nitrogen-to-protein conversion factors. Eur J Phycol 39:17–32

    Article  CAS  Google Scholar 

  • Medipally SR, Yusoff FM, Banerjee S, Shariff M (2015) Microalgae as sustainable renewable energy feedstock for biofuel production. Biomed Res Int 2015:519513–519513

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mohamed HI, Gomaa EZ (2012) Effect of plant growth promoting Bacillus subtilis and Pseudomonas fluorescens on growth and pigment composition of radish plants (Raphanus sativus) under NaCl stress. Photosynthetica 50:263–272

  • Mousavi P, Morowvat MH, Montazeri-Najafabady N, Abolhassanzadeh Z, Mohagheghzadeh A, Hamidi M, Niazi A, Ghasemi Y (2016) Investigating the effects of phytohormones on growth and β-carotene production in a naturally isolates stain of Dunaliella salina. J Appl Pharm Sci 6:164–171

    Article  CAS  Google Scholar 

  • Paes CR, Faria GR, Tinoco NA, Castro DJ, Barbarino E, Lourenço SO (2016) Growth, nutrient uptake and chemical composition of Chlorella sp. and Nannochloropsis oculata under nitrogen starvation. Lat Am J Aquat Res 44:275–292

    Article  Google Scholar 

  • Pan X, Chang F, Kang L, Liu Y, Li G, Li D (2008) Effects of gibberellin A3 on growth and microcystin production in Microcystis aeruginosa (Cyanophyta). J Plant Physiol 165:1691–1697

    Article  CAS  PubMed  Google Scholar 

  • Park WK, Yoo G, Moon M, Kim CW, Choi Y-E, Yang JW (2013) Phytohormone supplementation significantly increases growth of Chlamydomonas reinhardtii cultivated for biodiesel production. Appl Biochem Biotechnol 171:1128–1142

    CAS  PubMed  Google Scholar 

  • Parsaeimehr A, Mancera-Andrade EI, Robledo-Padilla F, Iqbal HM, Parra-Saldivar R (2017) A chemical approach to manipulate the algal growth, lipid content and high-value alpha-linolenic acid for biodiesel production. Algal Res 26:312–322

    Article  Google Scholar 

  • Przeslawski R, Bourdeau PE, Doall MH, Pan J, Perino L, Padilla DK (2008) The effects of a harmful alga on bivalve larval lipid stores. Harmful Algae 7:802–807

    Article  Google Scholar 

  • Ramaraj R, Tsai DD, Chen PH (2013) Chlorophyll is not accurate measurement for algal biomass. Chiang Mai J Sci 40:547–555

  • Rao P, Pattabiraman TN (1989) Re evaluation of the phenol-sulfuric acid reaction for the estimation of hexoses and pentoses. Anal Biochem 181:18–22

    Article  CAS  PubMed  Google Scholar 

  • Rawat I, Ranjith Kumar R, Mutanda T, Bux F (2013) Biodiesel from microalgae: a critical evaluation from laboratory to large scale production. Appl Energy 103:444–467

    Article  CAS  Google Scholar 

  • Renaud SM, Parry DL (1994) Microalgae for use in tropical aquaculture II: effect of salinity on growth, gross chemical composition and fatty acid composition of three species of marine microalgae. J Appl Phycol 6:347–356

    Article  CAS  Google Scholar 

  • Renaud SM, Thinh LV, Lambrinidis G, Parry DL (2002) Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture 211:195–214

    Article  CAS  Google Scholar 

  • Renuka N, Guldhe A, Singh P, Ansari FA, Rawat I, Bux F (2017) Evaluating the potential of cytokinins for biomass and lipid enhancement in microalga Acutodesmus obliquus under nitrogen stress. Energy Convers Manag 140:14–23

    Article  CAS  Google Scholar 

  • Richmond A (1986) Cell response to environmental factors. In: Richmond A (ed) CRC Handbook of microalgal mass culture. CRC Press, Boca Raton, pp 69–106

    Google Scholar 

  • Rojas-Tapias DF, Bonilla RR, Dussán J (2012) Effect of inoculation with plant growth-promoting bacteria on growth and copper uptake by sunflowers. Water Air Soil 223:643–654

    Article  CAS  Google Scholar 

  • Roopnarain A, Gray V, Sym S (2014) Phosphorus limitation and starvation effects on cell growth and lipid accumulation in Isochrysis galbana U4 for biodiesel production. Bioresour Technol 156:408–411

    Article  CAS  PubMed  Google Scholar 

  • Salama ES, Jeon B-H, Chang SW, Lee S-h, Roh H-S, Yang I-S, Kurade MB, El-Dalatony MM, Kim DH, Kim KH (2017) Interactive effect of indole-3-acetic acid and diethyl aminoethyl hexanoate on the growth and fatty acid content of some microalgae for biodiesel production. J Clean Prod 168:1017–1024

    Article  CAS  Google Scholar 

  • Singh P, Kumari S, Guldhe A, Misra R, Rawat I, Bux F (2016) Trends and novel strategies for enhancing lipid accumulation and quality in microalgae. Renew Sust Energ Rev 55:1–16

    Article  CAS  Google Scholar 

  • Sorgeloos P, Leger P (1992) Improved larviculture outputs of marine fish, shrimp and prawn. J World Aquacult Soc 23:251–264

    Article  Google Scholar 

  • Sponsel VM, Hedden P (2010) Gibberellin biosynthesis and inactivation. In: Davies PJ (ed) Plant hormones. Springer, Dordrecht, pp 63–94

  • Stirk WA, Bálint P, Tarkowská D, Novák O, Maróti G, Ljung K, Turečková V, Strnad M, Ördög V, Van Staden J (2014) Effect of light on growth and endogenous hormones in Chlorella minutissima (Trebouxiophyceae). J Plant Biochem Physiol 79:66–76

    Article  CAS  Google Scholar 

  • Wellburn R (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251

    Article  CAS  PubMed  Google Scholar 

  • Yu X-J, Sun J, Sun Y-Q, Zheng J-Y, Wang Z (2016) Metabolomics analysis of phytohormone gibberellin improving lipid and DHA accumulation in Aurantiochytrium sp. Biochem Eng J 112:258–268

    Article  CAS  Google Scholar 

  • Yu Z, Song M, Pei H, Jiang L, Hou Q, Nie C, Zhang L (2017) The effects of combined agricultural phytohormones on the growth, carbon partitioning and cell morphology of two screened algae. Bioresour Technol 239:87–96

    Article  CAS  PubMed  Google Scholar 

  • Zhang YM, Chen H, He C-L, Wang Q (2013) Nitrogen starvation induced oxidative stress in an oil-producing green alga Chlorella sorokiniana C3. PLoS One 8:e0069225

    Google Scholar 

  • Zhang J, Ianora A, Wu C, Pellegrini D, Esposito F, Buttino I (2015) How to increase productivity of the copepod Acartia tonsa (Dana): effects of population density and food concentration. Aquac Res 46:2982–2990

    Article  Google Scholar 

Download references

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mehdi Shamsaie Mehrgan or Seyed Pezhman Hosseini Shekarabi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madani, N.S.H., Shamsaie Mehrgan, M., Hosseini Shekarabi, S.P. et al. Regulatory effect of gibberellic acid (GA3) on the biomass productivity and some metabolites of a marine microalga, Isochrysis galbana. J Appl Phycol 33, 255–262 (2021). https://doi.org/10.1007/s10811-020-02291-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-020-02291-1

Keywords

Navigation