Skip to main content
Log in

Short-term effect of cadmium on the motility of three flagellated algal species

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The present work aims to develop a fast and reliable procedure for motility analysis of a short-term effect of heavy metal cadmium on the algal cell response in laboratory conditions. Three unicellular motile species similar in cell length, while differing in the cell wall and the flagellar system are used as model algae. We quantitatively characterise motility in terms of swimming speed and search radius following addition of 1 mg Cd L−1. Both swimming speed and search radius determined in control algal cultures reflect morphological features of the corresponding flagellated system. After 1 h of cell exposure to a toxic concentration of cadmium, a statistically significant decrease in swimming speed is determined with predominant erratic cell movement on the spot in all examined cultures. After 3 h of cell exposure to cadmium, swimming speed in most of the examined cell cultures recovered close to the control value, indicating quick cell adaptation to elevated cadmium concentration. The results support the implementation of swimming speed and search radius as motility parameters for direct screening of cell physiological state, which is applicable to ecotoxicological studies providing insight into the mechanism of cell adaptation under stress, as well as a better understanding of the spatial distribution of algal cells in aquatic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmed H, Häder D-P (2010) A fast algal bioassay for assessment of copper toxicity in water using Euglena gracilis. J Appl Phycol 22:785–792

    CAS  Google Scholar 

  • Barsanti L, Gualtieri P (2014) Algae: anatomy, biochemistry, and biotechnology, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Becker D, Becker B, Satir P, Melkonian M (1990) Isolation, purification, and characterization of flagellar scales from the green flagellate Tetraselmis striata (Prasinophyceae). Protoplasma 156:103–112

    Google Scholar 

  • Belghith T, Athmouni K, Bellassoued K, El Feki A, Ayadi H (2016) Physiological and biochemical response of Dunaliella salina to cadmium pollution. J Appl Phycol 28:991–999

    CAS  Google Scholar 

  • Ben-Amotz A, Avron M (eds) (1992) Dunaliella: physiology, biochemistry, and biotechnology. CRC Press, Boca Raton

    Google Scholar 

  • Ben-Amotz A, Polle JEW, Subba Rao DV (eds) (2009) The alga Dunaliella: biodiversity, physiology, genomics and biotechnology. Science Publishers, Enfield, New Hampshire

    Google Scholar 

  • Borowitzka MA (2018) Biology of microalgae. In: Levine IA, Fleurence J (eds) Microalgae in health and disease prevention. Academic Press, Amsterdam, pp 23–72

    Google Scholar 

  • Bräutigam A, Schaumlöffel D, Preud’homme H, Thondorf I, Wesenberg D (2011) Physiological characterization of cadmium-exposed Chlamydomonas reinhardtii. Plant Cell Environ 34:2071–2082

    PubMed  Google Scholar 

  • Brett SJ, Perasso L, Wetherbee R (1994) Structure and development of the cryptomonad periplast: a review. Protoplasma 181:106–122

    Google Scholar 

  • Brodie J, Lewis J (eds) (2007) Unravelling the algae: the past, present, and future of algal systematics. CRC Press, Boca Raton

    Google Scholar 

  • Butcher RW (1959) An introductory account of the smaller algae of British coastal waters. Part I: Introduction and Chlorophyceae. Fisheries Investigations, London, series IV 1: 1–74, 15 pls.

  • Calmano W, Ahlf W, Baade H, Förstner U (1988) Transfer of heavy metals from polluted sediments under changing environmental conditions. In: Astruc M, Lester JN (eds) Heavy metals in the hydrological cycle. Proceedings of the International Conference on Chemicals (Heavy Metals) in the Environment. Selper, London, pp 501–506

    Google Scholar 

  • Carfagna S, Lanza N, Salbitani G, Basile A, Sorbo S, Vona V (2013) Physiological and morphological responses of lead or cadmium exposed Chlorella sorokiniana 211-8 K (Chlorophyceae). Springerplus 2:147

    PubMed  PubMed Central  Google Scholar 

  • Cheng J, Qiu H, Chang Z, Jiang Z, Yin W (2016) The effect of cadmium on the growth and antioxidant response for freshwater algae Chlorella vulgaris. Springerplus 5:1290

    PubMed  PubMed Central  Google Scholar 

  • Cohn SA, Disparti NC (1994) Environmental factors influencing diatom cell motility. J Phycol 30:818–828

    Google Scholar 

  • Coquillé N, Jan G, Moreira A, Morin S (2015) Use of diatom motility features as endpoints of metolachlor toxicity. Aquat Toxicol 158:202–210

    PubMed  Google Scholar 

  • Cordero J, Guevara M, Morales E, Lodeiros C (2005) Efecto de metales pesados en el crecimiento de la microalga tropical Tetraselmis chuii (Prasinophyceae). Rev Biol Trop 53:3–4

    Google Scholar 

  • Danilov RA, Ekelund NGA (2001) Effects of pH on the growth rate, motility and photosynthesis in Euglena gracilis. Folia Microbiol 46:549–554

    CAS  Google Scholar 

  • Das N, Vimala R, Karthika P (2008) Biosorption of heavy metals – an overview. Indian J Biotechnol 7:159–169

    CAS  Google Scholar 

  • Debelius B, Forja JM, DelValls Á, Lubián LM (2009) Toxicity and bioaccumulation of copper and lead in five marine microalgae. Ecotoxicol Environ Saf 72:1503–1513

    CAS  PubMed  Google Scholar 

  • Faller P, Kienzler K, Krieger-Liszkay A (2005) Mechanism of Cd2+ toxicity: Cd2+ inhibits photoactivation of Photosystem II by competitive binding to the essential Ca2+ site. Biochim Biophys Acta Bioenerg 1706:158–164

    CAS  Google Scholar 

  • Folgar S, Torres E, Pérez-Rama M, Cid A, Herrero C, Abalde J (2009) Dunaliella salina as marine microalga highly tolerant to but a poor remover of cadmium. J Hazard Mater 165:486–493

    CAS  PubMed  Google Scholar 

  • Gaur JP, Rai LC (2001) Heavy metal tolerance in algae. In: Rai LC, Gaur JP (eds) Algal adaptation to environmental stresses: physiological, biochemical and molecular mechanisms. Springer, Berlin, pp 363–388

    Google Scholar 

  • Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH (eds) Culture of marine invertebrate animals: proceedings—1st Conference on Culture of Marine Invertebrate Animals Greenport. Springer US, Boston, pp 29–60

    Google Scholar 

  • Gupta VK, Rastogi A (2009) Biosorption of hexavalent chromium by raw and acid-treated green alga Oedogonium hatei from aqueous solutions. J Hazard Mater 163:396–402

    CAS  PubMed  Google Scholar 

  • Heuillet E, Moreau A, Halpern S, Jeanne N (1986) Cadmium binding to a thiol-molecule in vacuoles of Dunaliella bioculata contaminated with CdCl2: electron probe microanalysis. Biol Cell 58:79–86

    CAS  Google Scholar 

  • Hill DRA (1991) A revised circumscription of Cryptomonas (Cryptophyceae) based on examination of Australian strains. Phycologia 30:170–188

    Google Scholar 

  • Ivošević DeNardis N, Pečar Ilić J, Ružić I, Novosel N, Mišić Radić T, Weber A, Kasum D, Pavlinska Z, Katalin Balogh R, Hajdu B, Marček Chorvátová A, Gyurcsik B (2019) Algal cell response to laboratory-induced cadmium stress: a multimethod approach. Eur Biophys J 48:231–248

    PubMed  Google Scholar 

  • Jensen TE, Rachlin JW, Jani V, Warkentine B (1982) An x-ray energy dispersive study of cellular compartmentalization of lead and zinc in Chlorella saccharophila (Chlorophyta), Navicula incerta and Nitzschia closterium (Bacillariophyta). Environ Exp Bot 22:319–328

    CAS  Google Scholar 

  • John DM, Whitton BA, Brook AJ (2011) The freshwater algal flora of the British Isles: an identification guide to freshwater and terrestrial algae, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Lage OM, Parente AM, Vasconcelos MTSD (1996) Potential tolerance mechanisms of Prorocentrum micans (Dinophyceae) to sublethal levels of copper. J Phycol 32:416–423

    CAS  Google Scholar 

  • Lavoie I, Lavoie M, Fortin C (2012) A mine of information: Benthic algal communities as biomonitors of metal contamination from abandoned tailings. Sci Total Environ 25:231–241

    Google Scholar 

  • Liu J-g, Bourne WF (1999) Dynamic studies on flagellar regeneration in Dunaliella salina. Chin J Oceanol Limnol 17:200–206

    Google Scholar 

  • Liu G, Chai X, Shao Y, Hu L, Xie Q, Wu H (2011) Toxicity of copper, lead, and cadmium on the motility of two marine microalgae Isochrysis galbana and Tetraselmis chui. J Environ Sci 2:330–335

    Google Scholar 

  • Long H, Wang Q, Huang K (2015) Ciliary/flagellar protein ubiquitination. Cells 4:474–482

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall WF (2013) Cilia, Part A. Academic Press Elsevier, NY

    Google Scholar 

  • Mayali X, Franks PJS, Tanaka Y, Azam F (2008) Bacteria-induced motility reduction in Lingulodinium polyedrum (Dinophyceae). J Phycol 44:923–928

    PubMed  Google Scholar 

  • Melkonian M (ed) (1992) Algal cell motility. Springer, Berlin

    Google Scholar 

  • Millán de Kuhn R, Streb C, Breiter R, Richter P, Neesse T, Häder D-P (2006) Screening for unicellular algae as possible bioassay organisms for monitoring marine water samples. Water Res 40:2695–2703

    PubMed  Google Scholar 

  • Monteiro CM, Fonseca SC, Castro PML, Malcata FX (2011) Toxicity of cadmium and zinc on two microalgae, Scenedesmus obliquus and Desmodesmus pleiomorphus, from Northern Portugal. J Appl Phycol 23:97–103

    CAS  Google Scholar 

  • Moreno-Garrido I, Lubián LM, Soares AMVM (2000) Influence of cellular density on determination of EC50 in microalgal growth inhibition tests. Ecotoxicol Environ Saf 47:112–116

    CAS  PubMed  Google Scholar 

  • Morlon H, Fortin C, Adam C, Garnier-Laplace J (2005) Cellular quotas and induced toxicity of selenite in the unicellular green alga Chlamydomonas reinhardtii. Radioprotection 40:S101–S106

    Google Scholar 

  • Nassiri Y, Mansot JL, Wéry J, Ginsburger-Vogel T, Amiard JC (1997) Ultrastructural and electron energy loss spectroscopy studies of sequestration mechanisms of Cd and Cu in the marine diatom Skeletonema costatum. Arch Environ Contam Toxicol 33:147–155

    CAS  PubMed  Google Scholar 

  • Nishikawa K, Yamakoshi Y, Uemura I, Tominaga N (2003) Ultrastructural changes in Chlamydomonas acidophila (Chlorophyta) induced by heavy metals and polyphosphate metabolism. FEMS Microbiol Ecol 44:253–259

    CAS  PubMed  Google Scholar 

  • Pandey LK, Bergey EA (2016) Exploring the status of motility, lipid bodies, deformities and size reduction in periphytic diatom community from chronically metal (Cu, Zn) polluted waterbodies as a biomonitoring tool. Sci Total Environ 550:372–381

    CAS  PubMed  Google Scholar 

  • Pandey LK, Kumar D, Yadav A, Rai J, Gaur JP (2014) Morphological abnormalities in periphytic diatoms as a tool for biomonitoring of heavy metal pollution in a river. Ecol Indic 36:272–279

    CAS  Google Scholar 

  • Pavlinska Z, Chorvat D, Mateasik A, Jerigova M, Velic D, Ivošević DeNardis N, Marcek Chorvatova A (2020) Fluorescence responsiveness of unicellular marine algae Dunaliella to stressors under laboratory conditions. J Biotechnol 6:100018

    CAS  Google Scholar 

  • Penen F, Isaure M-P, Dobritzsch D, Castillo-Michel H, Gontier E, Le Coustumer P, Malherbe J, Schaumlöffel D (2020) Pyrenoidal sequestration of cadmium impairs carbon dioxide fixation in a microalga. Plant Cell Environ 43:479–495

    CAS  PubMed  Google Scholar 

  • Pillet F, Dague E, Pečar Ilić J, Ružić I, Rols M-P, Ivošević DeNardis N (2019) Changes in nanomechanical properties and adhesion dynamics of algal cells during their growth. Bioelectrochemistry 128:154–162

    Google Scholar 

  • R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Rai LC, Gaur JP, Kumar HD (1981) Protective effects of certain environmental factors on the toxicity of zinc, mercury, and methylmercury to Chlorella vulgaris. Environ Res 25:250–259

    CAS  PubMed  Google Scholar 

  • Ružić I (1982) Theoretical aspects of the direct titration of natural waters and its information yield for trace metal speciation. Anal Chim Acta 140:99–113

    Google Scholar 

  • Salisbury JL, Swanson JA, Floyd GL, Hall R, Maihle NJ (1981) Ultrastructure of the flagellar apparatus of the green alga Tetraselmis subcordiformis. Protoplasma 107:1–11

    Google Scholar 

  • Scheidegger C, Behra R, Sigg L (2011) Phytochelatin formation kinetics and toxic effects in the freshwater alga Chlamydomonas reinhardtii upon short- and long-term exposure to lead (II). Aquat Toxicol 101:423–429

    CAS  PubMed  Google Scholar 

  • Schoevaert D, Krishnaswamy S, Couturier M, Marano F (1988) Ciliary beat and cell motility of Dunaliella: computer analysis of high speed microcinematography. Biol Cell 62:229–240

    Google Scholar 

  • Silverberg BA (1975) Ultrastructural localization of lead in Stigeoclonium tenue (Chlorophyceae, Ulotrichales) as demonstrated by cytochemical and X-ray microanalysis. Phycologia 14:265–274

    CAS  Google Scholar 

  • Stallwitz E, Häder D-P (1994) Effects of heavy metals on motility and gravitactic orientation of the flagellate, Euglena gracilis. Eur J Protistol 30:18–24

    CAS  PubMed  Google Scholar 

  • Tanaka H, Nishimura O, Nakamura S, Sudo R (2005) Effect of alkylphenols on motility of Chlamydomonas reinhardtii and crustacea Daphnia magna. J Jpn Soc Water Environ 28:333–338

  • UNEP/MAP (2012) State of the Mediterranean Marine and Coastal Environment, UNEP/MAP – Barcelona Convention. United Nations Environment Programme/Mediterranean Action Plan (UNEP/MAP), Technical Report, Athens

  • Van Den Berg CMG (1982) Determination of copper complexation with natural organic ligands in seawater by equilibration with MnO2 I. Mar Chem 11:307–322

    Google Scholar 

  • Vladimirov VA, Wu MS, Pedley TJ, Denissenko PV, Zakhidova SG (2004) Measurement of cell velocity distributions in populations of motile algae. J Exp Biol 207:1203–1216

    CAS  PubMed  Google Scholar 

  • Volland S, Bayer E, Baumgartner V, Andosch A, Lütz C, Sima E, Lütz-Meindl U (2014) Rescue of heavy metal effects on cell physiology of the algal model system Micrasterias by divalent ions. J Plant Physiol 171:154–163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wan KY, Goldstein RE (2016) Coordinated beating of algal flagella is mediated by basal coupling. Proc Natl Acad Sci U S A 113:E2784–E2793

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang HM, Geng G, Wang JJ, Xin Y, Zhang Q, Cao DJ, Ma YH (2019) The remediation potential and kinetics of cadmium in the green alga Cladophora rupestris. Environ Sci Pollut Res 26:775–783

    CAS  Google Scholar 

  • Zhang J, Zhou F, Liu Y, Huang F, Zhang C (2020) Effect of extracellular polymeric substances on arsenic accumulation in Chlorella pyrenoidosa. Sci Total Environ 704:135368

    CAS  PubMed  Google Scholar 

  • Zheng GX, Li Y-J, Qi L-L, Liu X-M, Wang H, Yu S-P, Wang Y-H (2014) Marine phytoplankton motility sensor integrated into a microfluidic chip for high-throughput pollutant toxicity assessment. Mar Pollut Bull 84:147–154

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank two anonymous reviewers and the editor for a number of useful suggestions.

Funding

This work is supported by the Croatian Science Foundation Project “From algal cell surface properties to stress markers for aquatic ecosystems” (IP-2018-01-5840) and the International Visegrad Grant “Algal cell biophysical properties as markers for environmental stress in aquatic systems” (No. 21720055).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tarzan Legović or Nadica Ivošević DeNardis.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novosel, N., Kasum, D., Žutinić, P. et al. Short-term effect of cadmium on the motility of three flagellated algal species. J Appl Phycol 32, 4057–4067 (2020). https://doi.org/10.1007/s10811-020-02283-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-020-02283-1

Keywords

Navigation