The roles of phytohormones in metal stress regulation in microalgae

Abstract

The constant spread of heavy metal contamination creates an increasing global environmental issue that results in considerable deterioration of land and water ecosystems leading to a decline in the health of plants, animals and humans. Novel, algal-based filtration technologies have been gaining a great deal of attention given their eco-friendly, effective and easy to implement processes. This review focuses on the potential roles that phytohormones can play in heavy metal stress response in microalgae. It emphasizes phytohormone efficiency and proposes the use of these signaling molecules for enhanced metal stress alleviation in microalgae. Furthermore, future implications for algal-based filtration technologies involving modifications of phytohormone metabolism towards improved heavy metal biodegradation rates are presented.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Afonne OJ, Ifediba EC (2020) Heavy metals risks in plant foods – need to step up precautionary measures. Curr Opin Toxicol 22:1–6

    Article  Google Scholar 

  2. Al-Hakimi AMA (2007) Modification of cadmium toxicity in pea seedlings by kinetin. Plant Soil Environ 53:129–135

    CAS  Article  Google Scholar 

  3. Atici Ö, Aǧar G, Battal P (2005) Changes in phytohormone contents in chickpea seeds germinating under lead or zinc stress. Biol Plant 49:215–222

    CAS  Article  Google Scholar 

  4. Azimi A, Azari A, Rezakazemi M, Ansarpour M (2017) Removal of heavy metals from industrial wastewaters: a review. Chem Bio Eng Rev 4:37–59

    CAS  Google Scholar 

  5. Bajguz A (2009) Brassinosteroid enhanced the level of abscisic acid in Chlorella vulgaris subjected to short-term heat stress. J Plant Physiol 166:882–886

    CAS  Article  PubMed  Google Scholar 

  6. Bajguz A, Piotrowska-Niczyporuk A (2013) Synergistic effect of auxins and brassinosteroids on the growth and regulation of metabolite content in the green alga Chlorella vulgaris (Trebouxiophyceae). Plant Physiol Biochem 71:290–297

    CAS  Article  PubMed  Google Scholar 

  7. Bajguz A, Piotrowska-Niczyporuk A (2014) Interactive effect of brassinosteroids and cytokinins on growth, chlorophyll, monosaccharide and protein content in the green alga Chlorella vulgaris (Trebouxiophyceae). Plant Physiol Biochem 80:176–183

    CAS  Article  PubMed  Google Scholar 

  8. Belkadhi A, Djebali W, Hédiji H, Chaïbi W (2016) Cellular and signaling mechanisms supporting cadmium tolerance in salicylic acid treated seedlings. Plant Sci Today 3:41–47

    CAS  Article  Google Scholar 

  9. Bücker-Neto L, Paiva ALS, Machado RD, Arenhart RA, Margis-Pinheiro M (2017) Interactions between plant hormones and heavy metals responses. Genet Mol Biol 40:373–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bueso E, Alejandro S, Carbonell P, Perez-Amador MA, Fayos J, Bellés JM, Rodriguez PL, Serrano R (2007) The lithium tolerance of the Arabidopsis cat2 mutant reveals a cross-talk between oxidative stress and ethylene. Plant J 52:1052–1065

    CAS  Article  PubMed  Google Scholar 

  11. Cai XH, Brown C, Adhiya J, Traina SJ, Sayre RT (1999) Growth and heavy metal binding properties of transgenic Chlamydomonas expressing a foreign metallothionein gene. Int J Phytoremediation 1:53–65

    CAS  Article  Google Scholar 

  12. Cao S, Chen Z, Liu G, Jiang L, Yuan H, Ren G, Bian X, Jian H, Ma X (2009) The Arabidopsis ethylene-Insensitive 2 gene is required for lead resistance. Plant Physiol Biochem 47:308–312

    CAS  Article  PubMed  Google Scholar 

  13. Cheng SY, Show PL, Lau BF, Chang JS, Ling TC (2019) New prospects for modified algae in heavy metal adsorption. Trends Biotechnol 37:1255–1268

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Contreras-Pool PY, Peraza-Echeverria S, Ku-González ÁF, Herrera-Valencia VA (2016) The phytohormone abscisic acid increases triacylglycerol content in the green microalga Chlorella saccharophila (Chlorophyta). Algae 31:267–276

    CAS  Article  Google Scholar 

  15. de Jesus Raposo MF, de Morais RMSC (2013) Influence of the growth regulators kinetin and 2,4-D on the growth of two chlorophyte microalgae, Haematococcus pluvialis and Dunaliella salina. J Basic Appl Sci 9:302–308

    Google Scholar 

  16. Du H, Ahmed F, Lin B, Li Z, Huang Y, Sun G, Ding H, Wang C, Meng C, Gao Z (2017) The effects of plant growth regulators on cell growth, protein, carotenoid, PUFAs and lipid production of Chlorella pyrenoidosa ZF strain. Energies 10:1696

    Article  CAS  Google Scholar 

  17. El Arroussi H, Benhima R, Bennis I, El Mernissi N, Wahby I (2015) Improvement of the potential of Dunaliella tertiolecta as a source of biodiesel by auxin treatment coupled to salt stress. Renew Energy 77:15–19

    Article  CAS  Google Scholar 

  18. Falkowska M, Pietryczuk A, Piotrowska A, Bajguz A, Grygoruk A, Czerpak R (2011) The effect of gibberellic acid (GA3) on growth, metal biosorption and metabolism of the green algae Chlorella vulgaris (Chlorophyceae) Beijerinck exposed to cadmium and lead stress. Pol J Environ Stud 20:53–59

    Google Scholar 

  19. Gangwar S, Singh VP, Srivastava PK, Maurya JN (2011) Modification of chromium (VI) phytotoxicity by exogenous gibberellic acid application in Pisum sativum (L.) seedlings. Acta Physiol Plant 33:1385–1397

    CAS  Article  Google Scholar 

  20. Gao Z, Meng C, Zhang X, Xu D, Zhao Y, Wang Y, Lv H, Yang L, Chen L, Ye N (2012a) Differential expression of carotenogenic genes, associated changes on astaxanthin production and photosynthesis features induced by JA in H. pluvialis. PLoS One 7:e42243

  21. Gao Z, Meng C, Zhang X, Xu D, Miao X, Wang Y, Yang L, Lv H, Chen L, Ye N (2012b) Induction of salicylic acid (SA) on transcriptional expression of eight carotenoid genes and astaxanthin accumulation in Haematococcus pluvialis. Enzym Microb Technol 51:225–230

    CAS  Article  Google Scholar 

  22. Hadi F, Bano A, Fuller MP (2010) The improved phytoextraction of lead (Pb) and the growth of maize (Zea mays L.): the role of plant growth regulators (GA3 and IAA) and EDTA alone and in combinations. Chemosphere 80:457–462

    CAS  Article  PubMed  Google Scholar 

  23. Han X, Zeng H, Bartocci P, Fantozzi F, Yan Y (2018) Phytohormones and effects on growth and metabolites of microalgae: a review. Fermentation 4:25

    Article  CAS  Google Scholar 

  24. Hanaka A, Wójcik M, Dresler S, Mroczek-Zdyrska M, Maksymiec W (2016) Does methyl jasmonate modify the oxidative stress response in Phaseolus coccineus treated with Cu? Ecotoxicol Environ Saf 124:480–488

    CAS  Article  PubMed  Google Scholar 

  25. Hou Q, Ufer G, Bartels D (2016) Lipid signalling in plant responses to abiotic stress. Plant Cell Environ 39:1029–1048

    CAS  Article  PubMed  Google Scholar 

  26. Hu YF, Zhou G, Na XF, Yang L, Nan WB, Liu X, Zhang YQ, Li JL, Bi YR (2013) Cadmium interferes with maintenance of auxin homeostasis in Arabidopsis seedlings. J Plant Physiol 170:965–975

    CAS  Article  PubMed  Google Scholar 

  27. Ibuot A, Dean AP, McIntosh OA, Pittman JK (2017) Metal bioremediation by CrMTP4 over-expressing Chlamydomonas reinhardtii in comparison to natural wastewater-tolerant microalgae strains. Algal Res 24:89–96

    Article  Google Scholar 

  28. Jacobs W, Falkenstein K, Hamilton R (1985) Nature and amount of auxin in algae: IAA from extracts of Caulerpa paspaloides (Siphonales). Plant Physiol 78:844–848

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Jalmi SK, Bhagat PK, Verma D, Noryang S, Tayyeba S, Singh K, Sharma D, Sinha AK (2018) Traversing the links between heavy metal stress and plant signaling. Front Plant Sci 9:12

    Article  PubMed  PubMed Central  Google Scholar 

  30. Jiang L, Liu C, Cao H, Chen Z, Yang J, Cao S, Wei Z (2019) The role of cytokinin in selenium stress response in Arabidopsis. Plant Sci 281:122–132

    CAS  Article  Google Scholar 

  31. Ju C, Van de Poel B, Cooper ED, Thierer JH, Gibbons TR, Delwiche CF, Chang C (2015) Conservation of ethylene as a plant hormone over 450 million years of evolution. Nat Plants 1:14004

    CAS  Article  Google Scholar 

  32. Jusoh M, Loh SH, Chuah TS, Aziz A, San Cha T (2015) Elucidating the role of jasmonic acid in oil accumulation, fatty acid composition and gene expression in Chlorella vulgaris (Trebouxiophyceae) during early stationary growth phase. Algal Res 9:14–20

    Article  Google Scholar 

  33. Khalid S, Shahid M, Niazi NK, Murtaza B, Bibi I, Dumat C (2017) A comparison of technologies for remediation of heavy metal contaminated soils. J Geochem Explor 182:247–268

    CAS  Article  Google Scholar 

  34. Khatiwada B, Hasan MT, Sun A, Kamath KS, Mirzaei M, Sunna A, Nevalainen H (2020) Proteomic response of Euglena gracilis to heavy metal exposure – identification of key proteins involved in heavy metal tolerance and accumulation. Algal Res 45:101764

    Article  Google Scholar 

  35. Kim SH, Lim SR, Hong SJ, Cho BK, Lee H, Lee CG, Choi HK (2016) Effect of ethephon as an ethylene-releasing compound on the metabolic profile of Chlorella vulgaris. J Agric Food Chem 64:4807–4816

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Kobayashi M, Hirai N, Kurimura Y, Ohigashi H, Tsuji Y (1997) Abscisic acid-dependent algal morphogenesis in the unicellular green alga Haematococcus pluvialis. Plant Growth Regul 22:79–85

    CAS  Article  Google Scholar 

  37. Lau S, Shao N, Bock R, Jürgens G, De Smet I (2009) Auxin signaling in algal lineages: fact or myth? Trends Plant Sci 14:182–188

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Le Bail A, Billoud B, Kowalczyk N, Kowalczyk M, Gicquel M, Le Panse S, Stewart S, Scornet D, Cock JM, Ljung K (2010) Auxin metabolism and function in the multicellular brown alga Ectocarpus siliculosus. Plant Physiol 153:128–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee C, Choi YE, Yun YS (2016) A strategy for promoting astaxanthin accumulation in Haematococcus pluvialis by 1-aminocyclopropane-1-carboxylic acid application. J Biotechnol 236:120–127

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Li M, Ahammed GJ, Li C, Bao X, Yu J, Huang C, Yin H, Zhou J (2016) Brassinosteroid ameliorates zinc oxide nanoparticles-induced oxidative stress by improving antioxidant potential and redox homeostasis in tomato seedling. Front Plant Sci 7:615

    PubMed  PubMed Central  Google Scholar 

  41. Liu J, Qiu W, Song Y, Peng H, Zhao Y (2017a) The growth and lipid productivity of Chlorella pyrenoidosa enhanced by plant hormones under ammonium stress. Environ Prog Sustain Energy 36:1187–1193

    CAS  Article  Google Scholar 

  42. Liu T, Liu F, Wang C, Wang Z, Li Y (2017b) The boosted biomass and lipid accumulation in Chlorella vulgaris by supplementation of synthetic phytohormone analogs. Bioresour Technol 232:44–52

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Lu Y, Xu J (2015) Phytohormones in microalgae: a new opportunity for microalgal biotechnology? Trends Plant Sci 20:273–282

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Lu Y, Jiang P, Liu S, Gan Q, Cui H, Qin S (2010) Methyl jasmonate- or gibberellins A3-induced astaxanthin accumulation is associated with up-regulation of transcription of β-carotene ketolase genes (bkts) in microalga Haematococcus pluvialis. Bioresour Technol 101:6468–6474

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Lu Y, Tarkowská D, Turečková V, Luo T, Xin Y, Li J, Wang Q, Jiao N, Strnad M, Xu J (2014) Antagonistic roles of abscisic acid and cytokinin during response to nitrogen depletion in oleaginous microalga Nannochloropsis oceanica expand the evolutionary breadth of phytohormone function. Plant J 80:52–68

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Luo ZB, He J, Polle A, Rennenberg H (2016) Heavy metal accumulation and signal transduction in herbaceous and woody plants: paving the way for enhancing phytoremediation efficiency. Biotechnol Adv 34:1131–1148

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Maillard P, Thepenier C, Gudin C (1993) Determination of an ethylene biosynthesis pathway in the unicellular green alga, Haematococcus pluvialis Relationship between growth and ethylene production. J Appl Phycol 5:93–98

    CAS  Article  Google Scholar 

  48. Maksymiec W, Wójcik M, Krupa Z (2007) Variation in oxidative stress and photochemical activity in Arabidopsis thaliana leaves subjected to cadmium and excess copper in the presence or absence of jasmonate and ascorbate. Chemosphere 66:421–427

    CAS  Article  Google Scholar 

  49. Meng H, Hua S, Shamsi IH, Jilani G, Li Y, Jiang L (2009) Cadmium-induced stress on the seed germination and seedling growth of Brassica napus L., and its alleviation through exogenous plant growth regulators. Plant Growth Regul 58:47–59

    CAS  Article  Google Scholar 

  50. Mhamdi A, Van Breusegem F (2018) Reactive oxygen species in plant development. Development 145:dev164376

    Article  CAS  PubMed  Google Scholar 

  51. Moenne A, González A, Sáez CA (2016) Mechanisms of metal tolerance in marine macroalgae, with emphasis on copper tolerance in Chlorophyta and Rhodophyta. Aquat Toxicol 176:30–37

    CAS  Article  PubMed  Google Scholar 

  52. Mohan TC, Castrillo G, Navarro C, Zarco-Fernández S, Ramireddy E, Mateo C, Zamarreño AM, Paz-Ares J, Muñoz R, García-Mina JM, Hernández LE (2016) Cytokinin determines thiol-mediated arsenic tolerance and accumulation. Plant Physiol 171:1418–1426

    PubMed  PubMed Central  Google Scholar 

  53. Mowat JA (1965) A survey of results on the occurrence of auxins and gibberellins in algae. Bot Mar 8:149–155

    CAS  Article  Google Scholar 

  54. Noble A, Kisiala A, Galer A, Clysdale D, Emery RN (2014) Euglena gracilis (Euglenophyceae) produces abscisic acid and cytokinins and responds to their exogenous application singly and in combination with other growth regulators. Eur J Phycol 49:244–254

    CAS  Article  Google Scholar 

  55. Pandey C, Gupta M (2015) Selenium and auxin mitigates arsenic stress in rice (Oryza sativa L.) by combining the role of stress indicators, modulators and genotoxicity assay. J Hazard Mater 287:384–391

    CAS  Article  PubMed  Google Scholar 

  56. Piotrowska A, Czerpak R (2009) Cellular response of light/dark-grown green alga Chlorella vulgaris Beijerinck (Chlorophyceae) to exogenous adenine- and phenylurea-type cytokinins. Acta Physiol Plant 31:573–585

    CAS  Article  Google Scholar 

  57. Piotrowska-Niczyporuk A, Bajguz A (2014) The effect of natural and synthetic auxins on the growth, metabolite content and antioxidant response of green alga Chlorella vulgaris (Trebouxiophyceae). Plant Growth Regul 73:57–66

    CAS  Article  Google Scholar 

  58. Piotrowska-Niczyporuk A, Bajguz A, Zambrzycka E, Godlewska-zyłkiewicz B (2012) Phytohormones as regulators of heavy metal biosorption and toxicity in green alga Chlorella vulgaris (Chlorophyceae). Plant Physiol Biochem 52:52–65

    CAS  Article  PubMed  Google Scholar 

  59. Piotrowska-Niczyporuk A, Bajguz A, Zambrzycka-Szelewa E (2017) Response and the detoxification strategies of green alga Acutodesmus obliquus (Chlorophyceae) under lead stress. Environ Exp Bot 144:25–36

    CAS  Article  Google Scholar 

  60. Piotrowska-Niczyporuk A, Bajguz A, Kotowska U, Zambrzycka-Szelewa E, Sienkiewicz A (2020) Auxins and cytokinins regulate phytohormone homeostasis and thiol-mediated detoxification in the green alga Acutodesmus obliquus exposed to lead stress. Sci Rep 10:10193

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. Pratt R (1938) Influence of auxins on the growth of Chlorella vulgaris. Am J Bot 25:498–501

    CAS  Article  Google Scholar 

  62. Qin H, Hu T, Zhai Y, Lu N, Aliyeva J (2020) The improved methods of heavy metals removal by biosorbents: a review. Environ Pollut 258:113777

    CAS  Article  PubMed  Google Scholar 

  63. Ramakrishna B, Rao SSR (2015) Foliar application of brassinosteroids alleviates adverse effects of zinc toxicity in radish (Raphanus sativus L.) plants. Protoplasma 252:665–677

    CAS  Article  PubMed  Google Scholar 

  64. Raman V, Ravi S (2011) Effect of salicylic acid and methyl jasmonate on antioxidant systems of Haematococcus pluvialis. Acta Physiol Plant 33:1043–1049

    CAS  Article  Google Scholar 

  65. Rejeb KB, Abdelly C, Savouré A (2014) How reactive oxygen species and proline face stress together. Plant Physiol Biochem 80:278–284

    Article  CAS  Google Scholar 

  66. Salama ES, Jeon BH, Chang SW, Lee SH, Roh HS, Yang IS, Kurade MB, El-Dalatony MM, Kim DH, Kim KH, Kim S (2017) Interactive effect of indole-3-acetic acid and diethyl aminoethyl hexanoate on the growth and fatty acid content of some microalgae for biodiesel production. J Clean Prod 168:1017–1024

    CAS  Article  Google Scholar 

  67. Schellingen K, Van Der Straeten D, Vandenbussche F, Prinsen E, Remans T, Vangronsveld J, Cuypers A (2014) Cadmium-induced ethylene production and responses in Arabidopsis thaliana rely on ACS2 and ACS6 gene expression. BMC Plant Biol 14:214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sharma P, Bhardwaj R (2007) Effects of 24-epibrassinolide on growth and metal uptake in Brassica juncea L. under copper metal stress. Acta Physiol Plant 29:259–263

    CAS  Article  Google Scholar 

  69. Sharma P, Kumar A, Bhardwaj R (2016) Plant steroidal hormone epibrassinolide regulate - heavy metal stress tolerance in Oryza sativa L. by modulating antioxidant defense expression. Environ Exp Bot 122:1–9

    Article  CAS  Google Scholar 

  70. Shi GR, Cai QS, Liu QQ, Wu L (2009) Salicylic acid-mediated alleviation of cadmium toxicity in hemp plants in relation to cadmium uptake, photosynthesis, and antioxidant enzymes. Acta Physiol Plant 31:969–977

    CAS  Article  Google Scholar 

  71. Shi WG, Li H, Liu TX, Polle A, Peng CH, Luo ZB (2015) Exogenous abscisic acid alleviates zinc uptake and accumulation in Populus×canescens exposed to excess zinc. Plant Cell Environ 38:207–223

    CAS  Article  PubMed  Google Scholar 

  72. Shukla A, Srivastava S, Suprasanna P (2017) Genomics of metal stress-mediated signalling and plant adaptive responses in reference to phytohormones. Curr Genomics 18:512–522

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. Siddiqui MH, Al-Whaibi MH, Basalah MO (2011) Interactive effect of calcium and gibberellin on nickel tolerance in relation to antioxidant systems in Triticum aestivum L. Protoplasma 248:503–511

    CAS  Article  PubMed  Google Scholar 

  74. Signorelli S, Tarkowski ŁP, Van den Ende W, Bassham DC (2019) Linking autophagy to abiotic and biotic stress responses. Trends Plant Sci 24:413–430

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. Sirhindi G, Mir MA, Sharma P, Gill SS, Kaur H, Mushtaq R (2015) Modulatory role of jasmonic acid on photosynthetic pigments, antioxidants and stress markers of Glycine max L. under nickel stress. Physiol Mol Biol Plants 21:559–565

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. Siripornadulsil S, Traina S, Verma DPS, Sayre RT (2002) Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell 14:2837–2847

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28:1057–1060

    CAS  Article  Google Scholar 

  78. Souza JMC, Yokoya NS (2016) Effects of cytokinins on physiological and biochemical responses of the agar-producing red alga Gracilaria caudata (Gracilariales, Rhodophyta). J Appl Phycol 28:3491–3499

    CAS  Article  Google Scholar 

  79. Srivastava S, Srivastava AK, Suprasanna P, D’Souza SF (2013) Identification and profiling of arsenic stress-induced microRNAs in Brassica juncea. J Exp Bot 64:303–315

    CAS  Article  PubMed  Google Scholar 

  80. Stewart WDP, Fitzgerald GP, Burris RH (1968) Acetylene reduction by nitrogen-fixing blue-green algae. Arch Mikrobiol 62:336–348

    CAS  Article  PubMed  Google Scholar 

  81. Sulochana SB, Arumugam M (2016) Influence of abscisic acid on growth, biomass and lipid yield of Scenedesmus quadricauda under nitrogen starved condition. Bioresour Technol 213:198–203

    CAS  Article  PubMed  Google Scholar 

  82. Sun Y, Harpazi B, Wijerathna-Yapa A, Merilo E, de Vries J, Michaeli D, Gal M, Cuming AC, Kollist H, Mosquna A (2019) A ligand-independent origin of abscisic acid perception. Proc Natl Acad Sci U S A 116:24892–24899

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  83. Sytar O, Kumari P, Yadav S, Brestic M, Rastogi A (2019) Phytohormone priming: regulator for heavy metal stress in plants. J Plant Growth Regul 38:739–752

    CAS  Article  Google Scholar 

  84. Talarek-Karwel M, Bajguz A, Piotrowska-Niczyporuk A (2020) Hormonal response of Acutodesmus obliquus exposed to combined treatment with 24-epibrassinolide and lead. J Appl Phycol

  85. Thomas JC, Perron M, LaRosa PC, Smigocki AC (2005) Cytokinin and the regulation of a tobacco metallothionein-like gene during copper stress. Physiol Plant 123:262–271

    CAS  Article  Google Scholar 

  86. Tian BJ, Wang Y, Zhu YR, Lü XY, Huang K, Shao N, Beck CF (2006) Synthesis of the photorespiratory key enzyme serine: glyoxylate aminotransferase in C. reinhardtii is modulated by the light regime and cytokinin. Physiol Plant 127:571–582

    CAS  Article  Google Scholar 

  87. Tiwari S, Patel A, Prasad SM (2018) Kinetin alleviates chromium toxicity on growth and PS II photochemistry in Nostoc muscorum by regulating antioxidant system. Ecotoxicol Environ Saf 161:296–304

    CAS  Article  PubMed  Google Scholar 

  88. To JPC, Kieber JJ (2008) Cytokinin signaling: two-components and more. Trends Plant Sci 13:85–92

    CAS  Article  PubMed  Google Scholar 

  89. Trinh NN, Huang TL, Chi WC, Fu SF, Chen CC, Huang HJ (2014) Chromium stress response effect on signal transduction and expression of signaling genes in rice. Physiol Plant 150:205–224

    CAS  Article  PubMed  Google Scholar 

  90. Udayan A, Kathiresan S, Arumugam M (2018) Kinetin and gibberellic acid (GA3) act synergistically to produce high value polyunsaturated fatty acids in Nannochloropsis oceanica CASA CC201. Algal Res 32:182–192

    Article  Google Scholar 

  91. Urrutia C, Yañez-Mansilla E, Jeison D (2019) Bioremoval of heavy metals from metal mine tailings water using microalgae biomass. Algal Res 43:101659

    Article  Google Scholar 

  92. Vo TT, Lee C, Han SI, Kim JY, Kim S, Choi YE (2016) Effect of the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid on different growth stages of Haematococcus pluvialis. Bioresour Technol 220:85–93

    CAS  Article  PubMed  Google Scholar 

  93. Wang J, Chen J, Pan K (2013) Effect of exogenous abscisic acid on the level of antioxidants in Atractylodes macrocephala Koidz under lead stress. Environ Sci Pollut Res Int 20:1441–1449

    CAS  Article  PubMed  Google Scholar 

  94. Wang R, Wang J, Zhao L, Yang S, Song Y (2015) Impact of heavy metal stresses on the growth and auxin homeostasis of Arabidopsis seedlings. Biometals 28:123–132

    Article  CAS  PubMed  Google Scholar 

  95. Wu XX, Chen JL, Xu S, Zhu ZW, Zha DS (2016) Exogenous 24-epibrassinolide alleviates zinc-induced toxicity in eggplant (Solanum melongena L.) seedlings by regulating the glutathione-ascorbate-dependent detoxification pathway. J Hortic Sci Biotechnol 91:412–420

    CAS  Article  Google Scholar 

  96. Yoshida K, Igarashi E, Wakatsuki E, Miyamoto K, Hirata K (2004) Mitigation of osmotic and salt stresses by abscisic acid through reduction of stress-derived oxidative damage in Chlamydomonas reinhardtii. Plant Sci 167:1335–1341

    CAS  Article  Google Scholar 

  97. Yu XJ, Sun J, Sun YQ, Zheng JY, Wang Z (2016) Metabolomics analysis of phytohormone gibberellin improving lipid and DHA accumulation in Aurantiochytrium sp. Biochem Eng J 112:258–268

    CAS  Article  Google Scholar 

  98. Zeraatkar AK, Ahmadzadeh H, Talebi AF, Moheimani NR, McHenry MP (2016) Potential use of algae for heavy metal bioremediation, a critical review. J Environ Manag 181:817–831

    CAS  Article  Google Scholar 

  99. Zhang W, Yamane H, Takahashi N, Chapman DJ, Phinney BO (1989) Identification of a cytokinin in the green alga Chara globularis. Phytochemistry 28:337–338

    CAS  Article  Google Scholar 

  100. Zhang F, Zhang H, Xia Y, Wang G, Xu L, Shen Z (2011) Exogenous application of salicylic acid alleviates cadmium toxicity and reduces hydrogen peroxide accumulation in root apoplasts of Phaseolus aureus and Vicia sativa. Plant Cell Rep 30:1475–1483

    CAS  Article  PubMed  Google Scholar 

  101. Zhao Y, Wang HP, Han B, Yu X (2019a) Coupling of abiotic stresses and phytohormones for the production of lipids and high-value by-products by microalgae: a review. Bioresour Technol 274:549–556

    CAS  Article  PubMed  Google Scholar 

  102. Zhao Y, Xing H, Li X, Geng S, Ning D, Ma T, Yu X (2019b) Physiological and metabolomics analyses reveal the roles of fulvic acid in enhancing the production of astaxanthin and lipids in Haematococcus pluvialis under abiotic stress conditions. J Agric Food Chem 67:12599–12609

    CAS  Article  PubMed  Google Scholar 

  103. Zhu XF, Jiang T, Wang ZW, Lei GJ, Shi YZ, Li GX, Zheng SJ (2012) Gibberellic acid alleviates cadmium toxicity by reducing nitric oxide accumulation and expression of IRT1 in Arabidopsis thaliana. J Hazard Mater 239:302–307

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Financial support from the Natural Sciences and Engineering Council of Canada (RGPIN-05436) and NSERC Strategic Partnerships Grant Program (STPGP 521417) to RJNE is gratefully acknowledged. HNN was supported by NSERC Strategic Partnerships Grant Program (STPGP 521417) and International Graduate Scholarship (IGS) from Environmental Life Sciences Graduate (EnLS) program, Trent University.

Author information

Affiliations

Authors

Contributions

Hai Ngoc Nguyen: conceptualization; visualization; writing, original draft; writing, review and editing. Anna B. Kisiala: writing, review and editing. R.J. Neil Emery: funding acquisition, supervision, writing, review and editing.

Corresponding author

Correspondence to Hai Ngoc Nguyen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nguyen, H.N., Kisiala, A.B. & Emery, R.J.N. The roles of phytohormones in metal stress regulation in microalgae. J Appl Phycol (2020). https://doi.org/10.1007/s10811-020-02271-5

Download citation

Keywords

  • Algae-based bioremediation
  • Heavy metal stress
  • Microalgae
  • Phytohormone