Skip to main content
Log in

High-resolution melting analysis for identification of microalgae species

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

There is great microalgae biodiversity and their rediscovery as an inexhaustible source of biotechnological resources for all types of applications is leading to the already demonstrated benefits of their bioactive compounds which has boosted their industrial development. For this development, it is essential to have available technologies to easily control large-scale cultures. In this study, a high-resolution melting (HRM) analysis was developed to identify different microalgae that are currently used by the industry. HRM analysis is a simple, economical, fast, and reproducible method that allows the use of a stable molecule such as DNA to track a culture day by day without the need for visual microscopic controls. Ten microalgae were characterized by qPCR-HRM analysis: Isochrysis galbana, Phaeodactylum tricornutum, Muriellopsis sp., Porphyridium cruentum, Botryococcus braunii, Nannochloropsis gaditana, Chlorella sorokiniana, Chlamydomonas reinhardtii, Haematococcus pluvialis, and Scenedesmus obliquus. We determined that through the use of primers designed specifically for the 18S rDNA ribosomal gene, it is possible to significantly discriminate among the ten strains simultaneously by using HRM analysis. The results are also replicable over time, facilitating the daily and low-cost control of species used in the biotechnology industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abomohra AE-F, El-Sheekh M, Hanele D (2014) Pilot cultivation of the chlorophyte microalga Scenedesmus obliquus as a promising feedstock for biofuel. Biomass Bioenergy 64:237–244

    CAS  Google Scholar 

  • Alnuaimi AD, Wiesenfeld D, O’Brien-Simpson NM, Reynolds EC, Peng B, McCullough MJ (2014) The development and validation of a rapid genetic method for species identification and genotyping of medically important fungal pathogens using high-resolution melting curve analysis. Mol Oral Microbiol 29:117–130

    CAS  PubMed  Google Scholar 

  • Amman RI, Krumholz L, Stahl DA (1990) Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol 172:762–770

    Google Scholar 

  • Anglés d’Auriac MB, Le Gall L, Peña V, Hall-Spencer JM, Steneck RS, Fredriksen S, Gitmark J, Christie H, Husa V, Grefsrud ES, Rinde E (2019) Efficient coralline algal psbA mini barcoding and High Resolution Melt (HRM) analysis using a simple custom DNA preparation. Sci Rep 578:578

    Google Scholar 

  • APHA (2012) Standard methods for the evaluation of water and wastewater, 22nd edn. American Public Health Association, Washington, DC

    Google Scholar 

  • Ballin NZ, Onaindia JO, Jawad H, Fernandez-Carazo R, Maquet A (2019) High-resolution melting of multiple barcode amplicons for plant species authentication. Food Control 105:141–150

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barra L, Chandrasekaran R, Corato F, Brunet C (2014) The challenge of ecophysiological biodiversity for biotechnological applications of marine microalgae. Mar Drugs 12:1641–1675

    PubMed  PubMed Central  Google Scholar 

  • Beatrice-Lindner P, Garrido-Cardenas JA, Sepulveda C, Acien-Fernandez FG (2018) A new approach for detection and quantification of microalgae in industrial-scale microalgal cultures. Appl Microbiol Biotechnol 102:8429–8436

    CAS  PubMed  Google Scholar 

  • Becker W (2004) Microalgae in human and animal nutrition. In: Richmond A (ed) Handbook of Microalgal Culture. Blackwell, Oxford, pp 312–351

  • Borowitzka MA (2013) High-value products from microalgae their development and commercialization. J Appl Phycol 25:743–756

    CAS  Google Scholar 

  • Camacho-Rodríguez J, Cerón-García MC, González-López CV, López-Rosales L, Contreras-Gómez A, Molina-Grima E (2020) Use of continuous culture to develop an economical medium for the mass production of Isochrysis galbana for aquaculture. J Appl Phycol 32:851–863

    Google Scholar 

  • Centella MH, Arévalo-Gallegos A, Parra-Saldivar R, Iqbal HM (2017) Marine-derived bioactive compounds for value-added applications in bio-and non-bio sectors. J Clean Prod 168:1559–1565

    CAS  Google Scholar 

  • Chanda MJ, Merghoub N, El Arroussi H (2019) Microalgae polysaccharides: the new sustainable bioactive products for the development of plant bio-stimulants? World J Microbiol Biotechnol 35:177

    PubMed  Google Scholar 

  • Chisty Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Google Scholar 

  • Christaki E, Bonos E, Giannenas I, Florou-Paneri P (2013) Functional properties of carotenoids originating from algae. J Sci Food Agric 93:5–11

    CAS  PubMed  Google Scholar 

  • Darienko T, Gustavs L, Eggert A, Wolf W, Pröschold T (2015) Evaluating the species boundaries of green microalgae (Coccomyxa, Trebouxiophyceae, Chlorophyta) using integrative taxonomy and DNA barcoding with further implications for the species identification in environmental samples. PLoS One 10:e0127838

    PubMed  PubMed Central  Google Scholar 

  • Dawidziuk A, Popiel D, Luboinska M, Grzebyk M, Wisniewski M, Koczyk G (2017) Assessing contamination of microalgal astaxanthin producer Haematococcus cultures with high-resolution melting curve analysis. J Appl Genet 58:277–285

    CAS  PubMed  Google Scholar 

  • Day JG, Slocombe SP, Stanley MS (2012) Overcoming biological constraints to enable the exploitation of microalgae for biofuels. Bioresour Technol 109:245–251

    CAS  PubMed  Google Scholar 

  • Del Campo JA, Rodríguez H, Moreno J, Ángeles Vargas M, Rivas J, Guerrero MG (2001) Lutein production by Muriellopsis sp. in an outdoor tubular photobioreactor. J Biotechnol 85:289–295

    PubMed  Google Scholar 

  • Downey N (2014) Interpreting melt curves: an indicator, not a diagnosis. http://www.idtdna.com/pages/decoded/decoded-articles/coreconcepts/

  • Druml B, Cichna-Markl M (2014) High resolution melting (HRM) analysis of DNA–its role and potential in food analysis. Food Chem 158:245–254

    CAS  PubMed  Google Scholar 

  • Fawley MW, Fawley KP (2020) Identification of eukaryotic microalgal strains. J Appl Phycol. https://doi.org/10.1007/s10811-020-02190-5

  • Gorecki T, Smaga L (2019) fdANOVA: an R software package for analysis of variance for univariate and multivariate functional data. Comput Stat 34:571–597

    Google Scholar 

  • Gorman DC, Levine RP (1965) Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 54:1665–1669

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guedes AC, Amaro HM, Malcata FX (2011) Microalgae as sources of carotenoids. Mar Drugs 9:625–644

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guillard R, Ryther J (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239

    CAS  PubMed  Google Scholar 

  • Guo L, Sui Z, Zhang S, Ren Y, Liu Y (2015) Comparison of potential diatom “barcode” genes (the 18S rRNA gene and ITS, COI, rbcl) and their effectiveness in discriminating and determining species taxonomy in the Bacillariophyta. Int J Syst Evol Microbiol 65:1369–1380

    CAS  PubMed  Google Scholar 

  • Iacumin L, Ginaldi F, Manzano M, Anastasi V, Reale A, Zotta T, Rossi F, Coppola R, Comi G (2015) High resolution melting analysis (HRM) as a new tool for the identification of species belonging to the Lactobacillus casei group and comparison with species-specific PCRs and multiplex PCR. Food Microbiol 46:357–367

  • Ibarrondo O, Lopez-Oceja A, Baeta M, de Pancorbo MM (2019) A statistical method to enhance the analysis of the differences among High-Resolution Melting (HRM) curves of PCR-amplified DNA fragments. J Food Sci 84:2719–2728

    CAS  PubMed  Google Scholar 

  • Khoo CG, Dasan YK, Lam MK, Lee KT (2019) Algae biorefinery: review on a broad spectrum of downstream processes and products. Bioresour Technol 292:121964

    CAS  PubMed  Google Scholar 

  • Khosravi AD, Hashemzadeh M, Shahraki AH, Teimoori A (2017) Differential identification of mycobacterial species using high-resolution melting analysis. Front Microbiol 8:2045

    PubMed  PubMed Central  Google Scholar 

  • Kiuru P, D’Auria MV, Muller CD, Tammela P, Vuorela H, Yli-Kauhaluoma J (2014) Exploring marine resources for bioactive compounds. Planta Med 80:1200–1246

    Google Scholar 

  • Lee C-H, Chae H-S, Lee S-H, Kim H-S (2015) Growth characteristics and lipid content of three Korean isolates of Botryococcus braunii (Trebouxiophyceae). J Ecol Environ 38:67–74

    Google Scholar 

  • Lin G-M, Lai Y-H, Audira G, Hsiao C-D (2017) A simple method to decode the complete 18-5.8-28S rRNA repeated units of green algae by genome skimming. Int J Mol Sci 18:2341

    PubMed Central  Google Scholar 

  • Lorenz RT, Cysewski GR (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18:160–167

    CAS  PubMed  Google Scholar 

  • Macarti A, Ursu AV, Leroche C, Soanen N, Marchal L, Jubeau S, Djelveh G, Michaud P (2014) Extraction and fractionation of polysaccharides and B-phycoerythrin from the microalga Porphyridium cruentum by membrane technology. Algal Res 5:258–263

    Google Scholar 

  • Macías-Sánchez MD, Mantell C, Rodríguez M, Martínez de la Ossa E, Lubián LM, Montero O (2005) Supercritical fluid extraction of carotenoids and chlorophyll a from Nannochloropsis gaditana. J Food Eng 66:245–251

    Google Scholar 

  • Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, Basutkar P, Tivey ARN, Potter SC, Finn RD, Lopez R (2019) The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res 47:W636–W641

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manoylov KM (2014) Taxonomic identification of algae (morphological and molecular): species concepts, methodologies, and their implications for ecological bioassessment. J Phycol 50:409–424

    PubMed  Google Scholar 

  • McClure DD, Luiz A, Gerber B, Barton GW, Kavanagh JM (2018) An investigation into the effect of culture conditions on fucoxanthin production using the marine microalgae Phaeodactylum tricornutum. Algal Res 28:41–48

    Google Scholar 

  • Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Marechal-Drouard L, Marshall WF, Qu LH, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren Q, Ferris P, Lindquist E, Shapiro H, Lucas SM, Grimwood J, Schmutz J, Cardol P, Cerutti H, Chanfreau G, Chen CL, Cognat V, Croft MT, Dent R, Dutcher S, Fernandez E, Fukuzawa H, Gonzalez-Ballester D, Gonzalez-Halphen D, Hallmann A, Hanikenne M, Hippler M, Inwood W, Jabbari K, Kalanon M, Kuras R, Lefebvre PA, Lemaire SD, Lobanov AV, Lohr M, Manuell A, Meier I, Mets L, Mittag M, Mittelmeier T, Moroney JV, Moseley J, Napoli C, Nedelcu AM, Niyogi K, Novoselov SV, Paulsen IT, Pazour G, Purton S, Ral JP, Riano-Pachon DM, Riekhof W, Rymarquis L, Schroda M, Stern D, Umen J, Willows R, Wilson N, Zimmer SL, Allmer J, Balk J, Bisova K, Chen CJ, Elias M, Gendler K, Hauser C, Lamb MR, Ledford H, Long JC, Minagawa J, Page MD, Pan J, Pootakham W, Roje S, Rose A, Stahlberg E, Terauchi AM, Yang P, Ball S, Bowler C, Dieckmann CL, Gladyshev VN, Green P, Jorgensen R, Mayfield S, Mueller-Roeber B, Rajamani S, Sayre RT, Brokstein P, Dubchak I, Goodstein D, Hornick L, Huang YW, Jhaveri J, Luo Y, Martinez D, Ngau WCA, Otillar B, Poliakov A, Porter A, Szajkowski L, Werner G, Zhou K, Grigoriev IV, Rokhsar DS, Grossman AR (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–250

    CAS  PubMed  PubMed Central  Google Scholar 

  • Metting FB Jr (1996) Biodiversity and application of microalgae. J Ind Microbiol 17:477–489

    CAS  Google Scholar 

  • Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496

    CAS  PubMed  Google Scholar 

  • Monis PT, Giglio S, Saint CP (2005) Comparison of SYTO9 and SYBR Green I for real-time polymerase chain reaction and investigation of the effect of dye concentration on amplification and DNA melting curve analysis. Anal Biochem 340:24–34

    CAS  PubMed  Google Scholar 

  • Novis PM, Halle C, Wilson B, Tremblay LA (2009) Identification and characterization of freshwater algae from a pollution gradient using rbcL sequencing and toxicity testing. Arch Environ Contam Toxicol 57:504–514

    CAS  PubMed  Google Scholar 

  • Olaizola M (2003) Commercial development of microalgal biotechnology: from the test tube to the marketplace. Biomol Eng 20:459–466

    CAS  PubMed  Google Scholar 

  • Ortiz-Moreno ML, Cortés-Castillo CE, Sánchez-Villarraga J, Padilla J, Otero-Paternina AM (2012) Evaluación del crecimiento de la microalga Chlorella sorokiniana en diferentes medios de cultivo en condiciones autotróficas y mixotróficas. Orinoquía 16:11–20

    Google Scholar 

  • Osathanunkul M, Madesis P, de Boer H (2015) Bar-HRM for authentication of plant-based medicines: evaluation of three medicinal products derived from Acanthaceae species. PLoS One 10:e0128476

    PubMed  PubMed Central  Google Scholar 

  • Proschold T, Leliaert F (2007) Systematics of the green algae: conflict of classic and modern approaches. In: Brodie J, Lewis J (eds) Unravelling the algae: the past, present, and future of algal systematics. CRC Press, Boca Raton, pp 123–153

    Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648

    CAS  PubMed  Google Scholar 

  • R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ramsay JO, Hooker G, Graves S (2009) Functional data analysis with R and Matlab. Springer, New York

    Google Scholar 

  • Ramsay JO, Wickerham H, Graves S, Hooker G (2018) FDA: Functional data analysis. R package version 2.4.8

  • Reed GH, Kent JO, Wittwer CT (2007) High-resolution DNA melting analysis for simple and efficient molecular diagnostics. Pharmacogenomics 8:597–608

    CAS  PubMed  Google Scholar 

  • Rivas MO, Vargas P, Riquelme CE (2010) Interactions of Botryococcus braunii cultures with bacterial biofilms. Microb Ecol 60:628–635

    CAS  PubMed  Google Scholar 

  • Scaife MA, Nguyen GTDT, Rico J, Lambert D, Helliwell KE, Smith AG (2015) Establishing Chlamydomonas reinhardtii as an industrial biotechnology host. Plant J 82:532–546

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schiwek S, Beule L, Vinas M, Pfordt A, von Tiedemann A, Karlovsky P (2020) High-Resolution Melting (HRM) curve assay for the identification of eight Fusarium species causing ear rot in maize. Pathogens 9:270

    PubMed Central  Google Scholar 

  • Sharma KK, Schuhmann H, Schenk PM (2012) High lipid induction in microalgae for biodiesel production. Energies 5:1532–1553

    CAS  Google Scholar 

  • Singtonat S, Osathanunkul M (2015) Fast and reliable detection of toxic Crotalaria spectabilis Roth. in Thunbergia laurifolia Lindl. herbal products using DNA barcoding coupled with HRM analysis. BMC Complement Altern Med 15:162

    PubMed  PubMed Central  Google Scholar 

  • Slomka M, Sobalska-Kwapis M, Wachulec M, Bartosz G, Strapagiel D (2017) High Resolution Melting (HRM) for high-throughput genotyping-limitations and caveats in practical case studies. Int J Mol Sci 18:2316

    PubMed Central  Google Scholar 

  • Smaga L, Zhang JT (2019) Linear hypothesis testing with functional data. Technometrics 61:99–110

    Google Scholar 

  • Sogin ML, Gunderson JH (1987) Structural diversity of eukaryotic small subunit ribosomal RNAs. Ann N Y Acad Sci 503:125–139

    CAS  PubMed  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    CAS  PubMed  Google Scholar 

  • Stevenson RJ, Bahls LL (1999) Periphyton protocols. In: Barbour MT, Gerritsen J, Snyder BD (eds) Rapid bioassessment protocols for use in wadeable streams and rivers: periphyton, benthic macroinvertebrates, and fish, 2nd edn. EPA 841-B-99-002 United States Environmental Protection Agency, Washington DC, pp 1–22

    Google Scholar 

  • Trost A, Graf B, Eucker J, Sezer O, Possinger K, Göbel UB, Adam T (2004) Identification of clinically relevant yeasts by PCR/RFLP. J Microbiol Methods 56:201–211

    CAS  PubMed  Google Scholar 

  • Zhu F, Massana R, Not F, Marie D, Vaulot D (2005) Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiol Ecol 52:79–92

    CAS  PubMed  Google Scholar 

  • Zimmermann J, Jahn R (2011) Barcoding diatoms: evaluation of the V4 subregion on the 18S rRNA gene, including new primers and protocols. Org Divers Evol 11:173–192

    Google Scholar 

  • Zou S, Fei C, Wang C, Gao Z, Bao Y, He M, Wang C (2016) How DNA barcoding can be more effective in microalgae identification: a case of cryptic diversity revelation in Scenedesmus (Chlorophyceae). Sci Rep 6:36822

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Thanks are due to the “Internal Funds Program of the Vice-Rectory for Research, Innovation and Postgraduate from the University of Antofagasta” and to the “Fund for the Development in Research and/or Technology on Undergraduate Degree Activities” year 2016 at the University of Antofagasta.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the manuscript preparation. All authors approved the manuscript final version.

Corresponding author

Correspondence to Mariella Rivas.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2326 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rojo, D., Zapata, M., Maureira, A. et al. High-resolution melting analysis for identification of microalgae species. J Appl Phycol 32, 3901–3911 (2020). https://doi.org/10.1007/s10811-020-02240-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-020-02240-y

Keywords

Navigation