Light quality triggers biochemical modulation of Cyanobium sp.—photobiology as tool for biotechnological optimization

Abstract

Cyanobacteria are able to absorb light over a wide spectral range due to the presence of photoreceptors, making it possible to modulate the production of high-value compounds by inducing specific pathways. In order to evaluate the influence of light quality in cyanobacteria metabolism, Cyanobium sp. was grown in five different light conditions, by using low-pressure sodium vapor lamp (SOX) supplemented with low irradiances of green, red, and blue light and UV radiation compared to a control with only SOX. The effects of light supplementation on biomass productivity, photosynthetic activity, biochemical composition, and total antioxidant capacity were evaluated. No changes in biomass productivity were induced by any light supplements. The supplementation of red light triggered the production of lipids, phycocyanin, carotenoids, and total antioxidant compounds, while supplementation of green light increased the content of carbohydrates and chlorophyll a. Thus, supplementation of blue light and UV radiation showed little or no improvements to the culture, whereas under UV radiation the photosynthetic activity was reduced. Overall, Cyanobium sp. is a promising strain, mainly due to its accessibility to metabolism photoregulation as to produce various bioactive compounds.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Allen MM (1968) Simple conditions for growth of unicellular blue-green algae on plates. J Phycol 4:1–4

    CAS  PubMed  Google Scholar 

  2. Baba M, Kikuta F, Suzuki I, Watanabe MM, Shiraiwa Y (2012) Wavelength specificity of growth, photosynthesis, and hydrocarbon production in the oil-producing green alga Botryococcus braunii. Bioresour Technol 109:266–270

    CAS  PubMed  Google Scholar 

  3. Bennett A, Bogorad L (1973) Complementary chromatic adaptation in a filamentous blue-green alga. J Cell Biol 58:419–435

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Bradford MM, Pedroche J, Yust MM, Girón-Calle J, Alaiz M, Millán F, Vioque J (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    CAS  Google Scholar 

  5. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol 30:25–30

    Google Scholar 

  6. Cazzonelli CI, Pogson BJ (2010) Source to sink: regulation of carotenoid biosynthesis in plants. Trends Plant Sci 15:266–274

    CAS  PubMed  Google Scholar 

  7. Christie WW (1982) A simple procedure for rapid transmethylation of glycerolipids and cholesteryl esters. J Lipid Res 23:1072–1075

    CAS  PubMed  Google Scholar 

  8. Darko E, Heydarizadeh P, Schoefs B, Sabzalian MR (2014) Photosynthesis under artificial light: the shift in primary and secondary metabolism. Phil Trans Roy Soc B 369:20130243

    Google Scholar 

  9. Das P, Lei W, Aziz SS, Obbard JP (2011) Enhanced algae growth in both phototrophic and mixotrophic culture under blue light. Bioresour Technol 102:3883–3887

    CAS  PubMed  Google Scholar 

  10. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    CAS  Google Scholar 

  11. Eilers PHC, Peeters JCH (1988) A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecol Model 42:199–215

    Google Scholar 

  12. Figueroa FL (1991) Red, green and blue light photoreceptors controlling chlorophyll a, biliprotein and total protein synthesis in the red alga Chondrus crispus. Br Phycol J 26:383–393

    Google Scholar 

  13. Figueroa FL, Conde-Álvarez R, Gómez I (2003) Relations between electron transport rates determined by pulse amplitude modulated chlorophyll fluorescence and oxygen evolution in macroalgae under different light conditions. Photosynth Res 75:259–275

    CAS  PubMed  Google Scholar 

  14. Figueroa FL, Domínguez-González B, Korbee N (2014) Vulnerability and acclimation to increased UVB radiation in three intertidal macroalgae of different morpho-functional groups. Mar Environ Res 97:30–38

    CAS  PubMed  Google Scholar 

  15. Figueroa FL, Jerez CG, Korbee N (2013) Use of in vivo chlorophyll fluorescence to estimate photosynthetic activity and biomass productivity in microalgae grown in different culture systems. Lat Am J Aquat Res 41:801–819

    Google Scholar 

  16. Figueroa FL, Niell FXX (1990) Effects of light quality on chlorophyll and biliprotein accumulation in seaweeds. Mar Biol 104:321–327

    Google Scholar 

  17. Folch J, Lees M, Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Folin O, Ciocalteu V (1927) On tyrosine and tryptophane in proteins. J Biol Chem 73:627–648

    CAS  Google Scholar 

  19. Freitas S, Martins R, Costa M, Leão PN, Vitorino R, Vasconcelos V, Urbatzka R (2016) Hierridin B isolated from a marine cyanobacterium alters VDAC1, mitochondrial activity, and cell cycle genes on HT-29 colon adenocarcinoma cells. Mar Drugs 14:158

    PubMed Central  Google Scholar 

  20. Golden SS (1995) Light-responsive gene expression in cyanobacteria. J Bacteriol 177:1651–1654

    CAS  PubMed  PubMed Central  Google Scholar 

  21. González-Fernández C, Ballesteros M (2012) Linking microalgae and cyanobacteria culture conditions and key-enzymes for carbohydrate accumulation. Biotechnol Adv 30:1655–1661

    PubMed  Google Scholar 

  22. González CV, Fanzone ML, Cortés LE, Bottini R, Lijavetzky DC, Ballaré CL, Boccalandro HE (2015) Fruit-localized photoreceptors increase phenolic compounds in berry skins of field-grown Vitis vinifera L. cv. Malbec. Phytochemistry 110:46–57

    PubMed  Google Scholar 

  23. Gouveia L, Marques AE, Silva TL, Reis A (2009) Neochloris oleabundans UTEX #1185: a suitable renewable lipid source for biofuel production. J Ind Microbiol Biotechnol 36:821–826

    CAS  PubMed  Google Scholar 

  24. Guedes AC, Amaro HM, Gião MS, Malcata FX (2013) Optimization of ABTS radical cation assay specifically for determination of antioxidant capacity of intracellular extracts of microalgae and cyanobacteria. Food Chem 138:638–643

    CAS  PubMed  Google Scholar 

  25. Guedes AC, Katkam NG, Varela J, Malcata FX (2014) Photobioreactors for cyanobacterial culturing. In: Sharma NK, Rai AK, Stal LJ (eds) Cyanobacteria—an economical perspective. Wiley, NY, pp 270–292

  26. Gutu A, Kehoe DM (2012) Emerging perspectives on the mechanisms, regulation, and distribution of light color acclimation in cyanobacteria. Mol Plant 5:1–13

    CAS  PubMed  Google Scholar 

  27. Hegemann P, Fuhrmann M, Kateriya S (2001) Algal sensory photoreceptors. J Phycol 59:167–189

    Google Scholar 

  28. Helbling EW, Gao K, Ai H, Ma Z, Villafane VE (2006) Differential responses of Nostoc sphaeroides and Arthrospira platensis to solar ultraviolet radiation exposure. J Appl Phycol 18:57–66

    Google Scholar 

  29. Henrard AA, da Rosa GM, Moraes L, de Morais MG, Costa JAV (2015) The cultivation of microalgae Cyanobium sp. and Chlorella sp. in different culture media and stirring setting. Afr J Microbiol Res 9:1431–1439

    Google Scholar 

  30. Henrard AA, de Morais MG, Costa JAV (2011) Vertical tubular photobioreactor for semicontinuous culture of Cyanobium sp. Bioresour Technol 102:4897–4900

    CAS  PubMed  Google Scholar 

  31. Hübschmann T, Yamamoto H, Gieler T, Murata N, Börner T (2005) Red and far-red light alter the transcript profile in the cyanobacterium Synechocystis sp. PCC 6803: impact of cyanobacterial phytochromes. FEBS Lett 579:1613–1618

    PubMed  Google Scholar 

  32. Jerez CG, Malapascua JR, Sergejevová M, Masojídek J, Figueroa FL (2016) Chlorella fusca (Chlorophyta) grown in thin-layer cascades: estimation of biomass productivity by in vivo chlorophyll a fluorescence monitoring. Algal Res 17:21–30

    Google Scholar 

  33. Johnsen G, Sakshaug E (2007) Biooptical characteristics of PSII and PSI in 33 species (13 pigment groups) of marine phytoplankton, and the relevance for pulse-amplitude-modulated and fast-repetition-rate fluorometry. J Phycol 43:1236–1251

    CAS  Google Scholar 

  34. Latifi A, Ruiz M, Zhang CC (2009) Oxidative stress in cyanobacteria. FEMS Microbiol Rev 33:258–278

    CAS  PubMed  Google Scholar 

  35. Liang C, Zhao F, Wei W, Wen Z, Qin S (2006) Carotenoid biosynthesis in cyanobacteria: structural and evolutionary scenarios based on comparative genomics. Int J Biol Sci 2:197–207

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lima GM, Teixeira PC, Teixeira CM, Filócomo D, Lage CL (2018) Influence of spectral light quality on the pigment concentrations and biomass productivity of Arthrospira platensis. Algal Res 31:157–166

    Google Scholar 

  37. Masojídek J, Torzillo G, Koblížek M (2013) Photosynthesis in microalgae. In: Richmond A, Hu Q (eds) Handbook of microalgal culture. Wiley-Blackwell, Oxford, pp 21–36

  38. Mattos ER, Singh M, Cabrera ML, Das KC (2015) Enhancement of biomass production in Scenedesmus bijuga high-density culture using weakly absorbed green light. Biomass Bioenergy 81:473–478

    CAS  Google Scholar 

  39. Mohsenpour SF, Willoughby N (2013) Luminescent photobioreactor design for improved algal growth and photosynthetic pigment production through spectral conversion of light. Bioresour Technol 142:147–153

    CAS  PubMed  Google Scholar 

  40. Montero O, Velasco M, Sanz-Arranz A, Rull F (2016) Effect of different broad waveband lights on membrane lipids of a cyanobacterium, Synechococcus sp., as determined by UPLC-QToF-MS and vibrational spectroscopy. Biology (Basel) 142:147–153

    Google Scholar 

  41. Montgomery BL (2017) Seeing new light: recent insights into the occurrence and regulation of chromatic acclimation in cyanobacteria. Curr Opin Plant Biol 37:18–23

    CAS  PubMed  Google Scholar 

  42. Montgomery BL (2016) Mechanisms and fitness implications of photomorphogenesis during chromatic acclimation in cyanobacteria. J Exp Bot 67:4079–4090

    CAS  PubMed  Google Scholar 

  43. Montgomery BL (2007) Sensing the light: photoreceptive systems and signal transduction in cyanobacteria. Mol Microbiol 64:16–27

    CAS  PubMed  Google Scholar 

  44. Narikawa R, Fushimi K, Ikeuchi M (2015) Red-shifted red/green-type cyanobacteriochrome AM1_1870g3 from the chlorophyll d-bearing cyanobacterium Acaryochloris marina. Biochem Biophys Res Commun 461:390–395

    CAS  PubMed  Google Scholar 

  45. Nishiyama Y, Allakhverdiev SI, Murata N (2011) Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II. Physiol Plant 142:35–46

    CAS  PubMed  Google Scholar 

  46. Nishiyama Y, Allakhverdiev SI, Murata N (2006) A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochim Biophys Acta Bioenerg 1757:742–749

    CAS  Google Scholar 

  47. Ojit SK, Indrama T, Gunapati O, Avijeet SO, Subhalaxmi SA, Silvia C, Indira DW, Romi K, Minerva S, Thadoi DA (2015) The response of phycobiliproteins to light qualities in Anabaena circinalis. J Appl Biol Biotechnol 3:1–6

    CAS  Google Scholar 

  48. Pagels F, Barufi JB, Vega J, Abdala-Díaz R, Vasconcelos V, Guedes AC, Figueroa FL (2020) Light regulating metabolic responses of Cyanobium sp. (cyanobacteria). Fundam Appl Limnol 193:285–297

    Google Scholar 

  49. Ritchie RJ (2006) Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth Res 89:27–41

    CAS  PubMed  Google Scholar 

  50. Rockwell NC, Duanmu D, Martin SS, Bachy C, Price DC, Bhattacharya D, Worden AZ, Lagarias JC (2014) Eukaryotic algal phytochromes span the visible spectrum. Proc Natl Acad Sci 111:3871–3876

    CAS  PubMed  Google Scholar 

  51. Rüdiger W, López-Figueroa F (1992) Photoreceptors in algae. Photochem Photobiol 55:949–954

    Google Scholar 

  52. Schulze PSC, Barreira LA, Pereira HGC, Perales JA, Varela JCS (2014) Light emitting diodes (LEDs) applied to microalgal production. Trends Biotechnol 32:422–430

    CAS  PubMed  Google Scholar 

  53. Segovia M, Gordillo FJL, Figueroa FL (2003) Cyclic-AMP levels in the lichen Evernia prunastri are modulated by light quantity and quality. J Photochem Photobiol B 70:145–151

    CAS  PubMed  Google Scholar 

  54. Singh SP, Häder DP, Sinha RP (2010) Cyanobacteria and ultraviolet radiation (UVR) stress: mitigation strategies. Ageing Res Rev 9:79–90

    CAS  PubMed  Google Scholar 

  55. Sinha RP, Singh N, Kumar A, Kumar HD, Häder M, Häder DP (1996) Effects of UV irradiation on certain physiological and biochemical processes in cyanobacteria. J Photochem Photobiol B 32:107–113

    CAS  Google Scholar 

  56. Sirisuk PL, Ra CH, Jeong GT, Kim SK (2018) Effects of wavelength mixing ratio and photoperiod on microalgal biomass and lipid production in a two-phase culture system using LED illumination. Bioresour Technol 253:175–181

    CAS  PubMed  Google Scholar 

  57. Strickland JDH, Parsons TR (1972) A practical handbook of seawater analysis. Fisheries Research Board of Canada, Ottawa

    Google Scholar 

  58. Suyono EA, Aminin PL, Mu’avatun U, Habiba RN, Ramdaniyah REF (2015) Combination of blue, red, white, and ultraviolet lights for increasing carotenoids and biomass of microalga Haematococcus pluvialis. Procedia Environ Sci 28:399–405

    CAS  Google Scholar 

  59. Taiz L, Zeiger E (2015) Plant physiology (sixth edition). Sinauer Associates, NY

    Google Scholar 

  60. Takano H, Arai T, Hirano M, Matsunaga T (1995) Effects of intensity and quality of light on phycocyanin production by a marine cyanobacterium Synechococcus sp. NKBG 042902. Appl Microbiol Biotechnol 43:1014–1018

    CAS  Google Scholar 

  61. Villafane VE, Gao K, Helbling EW (2005) Short- and long-term effects of solar ultraviolet radiation on the red algae Porphyridium cruentum (SF Gray) Nägeli. Photochem Photobiol Sci 4:376–382

    CAS  PubMed  Google Scholar 

  62. Walter A, de Carvalho JC, Soccol VT, de Faria ABB, Ghiggi V, Soccol CR (2011) Study of phycocyanin production from Spirulina platensis under different light spectra. Braz Arch Biol Technol 54:675–682

    CAS  Google Scholar 

  63. Wiltbank LB, Kehoe DM (2019) Diverse light responses of cyanobacteria mediated by phytochrome superfamily photoreceptors. Nat Rev Microbiol 17:37–50

    CAS  PubMed  Google Scholar 

  64. Xu Y, Harvey PJ (2019) Carotenoid production by Dunaliella salina under red light. Antioxidants. 8:123

    CAS  PubMed Central  Google Scholar 

  65. Yang Y, Weathers P (2014) Red light and carbon dioxide differentially affect growth, lipid production, and quality in the microalga, Ettlia oleoabundans. Appl Microbiol Biotechnol 99:489–499

    PubMed  Google Scholar 

Download references

Acknowledgments

A PhD fellowship (reference SFRH/BD/136767/2018) for author F.P. was granted by Fundação para a Ciência e Tecnologia (FCT, Portugal) under the auspices of Programa Operacional Capital Humano (POCH), supported by the European Social Fund and Portuguese funds (MECTES); a grant of Carolina Foundation was given to author J.B.B.

Funding

This work was financially co-supported by the COST Action ES1408 European network for algal bioproducts (EUALGAE); by the ZEBRALGRE (PTDC/CVT-WEL/5207/2014), funded by national funds through FCT supported by COMPETE 2020: POCI-01-0145-FEDER-016797; and by the strategical funding from FCT (UIDB/04423/2020 and UIDP/04423/2020) and the Atlantic Interreg Project—Enhance MicroAlgae—High added-value industrial opportunities for microalgae in the Atlantic Area (EAPA_338/2016). We also acknowledge the Junta de Andalucía for financing the RNM295 research group in University of Malaga.

Author information

Affiliations

Authors

Contributions

F.P., V.V., and F.L.F. conceived and designed research. F.P., J.B.B., J.V., and R.A. performed the experimental trial. F.P., J.B.B., and A.C.G. performed data analysis. V.V., A.C.G., and F.L.F. were responsible for the supervision and funding acquirement. F.P. wrote the paper with the revision and comments of all authors. All authors approved the manuscript.

Corresponding author

Correspondence to Fernando Pagels.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pagels, F., Bonomi-Barufi, J., Vega, J. et al. Light quality triggers biochemical modulation of Cyanobium sp.—photobiology as tool for biotechnological optimization. J Appl Phycol 32, 2851–2861 (2020). https://doi.org/10.1007/s10811-020-02179-0

Download citation

Keywords

  • Antioxidant capacity
  • Carotenoids
  • Cyanobacteria
  • Fatty acids
  • Lipids
  • Photosynthetic activity
  • Phycobiliproteins