Photobiochemical changes in Chlorella g120 culture during trophic conversion (metabolic pathway shift) from heterotrophic to phototrophic growth regime

Abstract

Physiological and photobiochemical changes and growth in the heterotrophic strain Chlorella vulgaris g120 were studied during trophic conversion from heterotrophic to phototrophic growth regime. After the exposure of the Chlorella g120 culture to light, it revealed a significant activity of the electron transport (450–700 μmol e m−2 s−1 as measured by chlorophyll fluorescence) and high PSII photochemical yield Fv/Fm between 0.7 and 0.8. Fast fluorescence induction kinetics showed that PSII electron acceptors in the plastoquinone pool remained partly oxidized, indicating no downregulation of PSII electron transport. The data further revealed that high photobiochemical activity is lost in futile (protective) processes of non-photochemical quenching and respiration which indicate that surplus energy is dissipated in these processes. Pigment analysis showed low chlorophyll content − 0.35–1.15% as compared with exclusively phototrophic strain Chlorella vulgaris R-117. Nevertheless, the carotenoid content in g120 was relatively high − 0.20–0.33% of dry weight which resulted in a considerably high ratio of carotenoid/chlorophyll − 0.31–0.44. This strain probably does not possess the fully competent photosynthetic apparatus and can only partially adapt to phototrophy. We show that the heterotrophically grown g120 strain can undergo metabolic shift from heterotrophic to phototrophic growth regime. It might be an interesting strain from biotechnological point of view as a source of carotenoids, especially lutein.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Babaei A, Ranglová K, Malapascua JR, Masojídek J (2017) The synergistic effect of selenium (selenite, –SeO32−) dose and irradiance intensity in Chlorella cultures. AMB Express 7:56

    PubMed  PubMed Central  Google Scholar 

  2. Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    CAS  PubMed  Google Scholar 

  3. Barclay W, Apt K, Dong XD (2013) Commercial production of microalgae via fermentation. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology, 2nd edn. Wiley, New York, pp 134–145

    Google Scholar 

  4. Barros A, Pereira H, Campos J, Marques A, Varela J, Silva J (2019) Heterotrophy as a tool to overcome the long and costly autotrophic scale-up process for large scale production of microalgae. Sci Rep 9:13935

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Benavente-Valdés JR, Aguilar C, Contreras-Esquivel JC, Méndez-Zavala A, Montañez J (2016) Strategies to enhance the production of photosynthetic pigments and lipids in chlorophyceae species. Biotechnol Rep 10:117–125

    Google Scholar 

  6. Bilger W, Björkman O (1990) Role of the xanthophyll cycle in photoprotection elucidated by measurements of light induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res 25:173–185

    CAS  PubMed  Google Scholar 

  7. Bohutskyi P, Kula T, Kessler BA, Hong Y, Bouwer EJ, Betenbaugh MJ, Allnutt FCT (2014) Mixed trophic state production process for microalgal biomass with high lipid content for generating biodiesel and biogas. Bioenerg Res 7:1174–1185

    CAS  Google Scholar 

  8. Cardol P, Forti G, Finazzi G (2011) Regulation of electron transport in microalgae. Biochim Biophys Acta 1807:912–918

    CAS  PubMed  Google Scholar 

  9. Chen F, Chen H, Gong X (1997) Mixotrophic and heterotrophic growth of Haematococcus lacustris and rheological behaviour of the cell suspensions. Bioresour Technol 62:19–24

    CAS  Google Scholar 

  10. Doucha J, Lívanský K (2012) Production of high-density Chlorella culture grown in fermenters. J Appl Phycol 24:35–43

    CAS  Google Scholar 

  11. Eilers PHC, Peeters JCH (1988) A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecol Model 42:199–215

    Google Scholar 

  12. Endo H, Sansawa H (1994) Recent advances in the application of Chlorella. In: Second Asia-Pacific Conference on Algal Biotechnology, p 22

  13. Endo H, Shirota M (1972) Studies on the heterotrophic growth of Chlorella in a mass culture. In: Proc IV IFS: Ferment Technol Today (ed. Terui), pp 533–541

  14. Endo H, Nakajima K, Chino R, Shirota M (1974) Studies on Chlorella regularis heterotrophic fast growing strain. 1. Growth characteristics and cellular components of Chlorella regularis, heterotrophic fast growing strain. Agric Biol Chem 38:9–18

    Google Scholar 

  15. Endo H, Sansawa AH, Nakajima K (1977) Studies on Chlorella regularis heterotrophic fast growing strain. II. Mixotrophic growth in relation to light intensity and acetate concentration. Plant Cell Physiol 18:199

    CAS  Google Scholar 

  16. Enríquez S, Borowitzka MA (2011) The use of the fluorescence signal in studies of seagrasses and macroalgae. In: Suggett DJ, Prášil O, Borowitzka MA (eds) Chlorophyll a fluorescence in aquatic sciences: methods and applications. Springer, Dordrecht, pp 187–208

    Google Scholar 

  17. Falkowski PG, Raven JA (1997) Aquatic photosynthesis. Blackwell Science, Malden, p 375

    Google Scholar 

  18. Fan J, Huang J, Li Y, Han F, Wang J, Li X, Wang W, Li S (2012) Sequential heterotrophy–dilution–photoinduction cultivation for efficient microalgal biomass and lipid production. Bioresour Technol 112:206–211

    CAS  PubMed  Google Scholar 

  19. Figueroa FL, Conde-Álvarez R, Gómez I (2003) Relations between electron transport rates determined by pulse amplitude modulated chlorophyll fluorescence and oxygen evolution in macroalgae under different light conditions. Photosynth Res 75:259–275

    CAS  PubMed  Google Scholar 

  20. Flameling IA, Kromkamp J (1998) Light dependence of quantum yields for PSII charge separation and oxygen evolution in eukaryotic algae. Limnol Oceanogr 43:284–297

    CAS  Google Scholar 

  21. Goltsev VN, Kalaji HM, Paunov M, Bąba W, Horaczek T, Mojski J, Allakhverdiev SI (2016) Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus. Russ J Plant Physiol 63:869–893

    CAS  Google Scholar 

  22. Gordon JM, Polle JEW (2007) Ultrahigh bioproductivity from algae. Appl Microbiol Biotechnol 76:969–975

    CAS  PubMed  Google Scholar 

  23. Hata N, Ogbonna JC, Hasegawa Y, Taroda H, Tanaka H (2001) Production of astaxanthin by Haematococcus pluvialis in a sequential heterotrophic-photoautotrophic culture. J Appl Phycol 13:395–402

    CAS  Google Scholar 

  24. Hofstraat JW, Peeters JC, Snel JFH, Geel C (1994) Simple determination of photosynthetic efficiency and photoinhibition of Dunaliella tertiolecta by saturating pulse measurements. Mar Ecol Prog Ser 103:187–196

    Google Scholar 

  25. Ivanov AG, Sane PV, Hurry V, Öquist G, Huner NP (2008) Photosystem II reaction centre quenching: mechanisms and physiological role. Photosynth Res 98:565–574

    CAS  PubMed  Google Scholar 

  26. Jaffri S (2011) Characterization of the photosynthetic apparatus of Chlorella BI sp., an Antarctica mat alga under varying trophic growth states. Dissertation, Miami University, pp 72

  27. Knoppová J, Masojídek J, Pokorný J (1993) Chlorophyll fluorescence quenching caused by inorganic carbon depletion in the green alga Scenedesmus quadricauda. Photosynthetica 28:541–547

    Google Scholar 

  28. Kromkamp JC, Forster RM (2003) The use of variable fluorescence measurements in aquatic ecosystems: differences between multiple and single turnover measuring protocols and suggested terminology. Eur J Phycol 38:103–112

    Google Scholar 

  29. Kromkamp J, Barranguet C, Peene J (1998) Determination of microphytobenthos PSII quantum efficiency and photosynthetic activity by means of variable chlorophyll fluorescence. Mar Ecol Prog Ser 162:45–55

    CAS  Google Scholar 

  30. Leuenberger M, Morris JM, Chan AM, Leonelli L, Niyogi KK, Fleming GR (2017) Dissecting and modeling zeaxanthin- and lutein-dependent nonphotochemical quenching in Arabidopsis thaliana. Proc Natl Acad Sci 114:E7009–E7017

    CAS  PubMed  Google Scholar 

  31. Lin J-H, Lee D-J, Chang J-S (2015) Lutein in specific marigold flowers and microalgae. J Taiwan Inst Chem Eng 49:90–94

    CAS  Google Scholar 

  32. Liu J, Hu Q (2013) Chlorella: industrial production of cell mass and chemicals. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology, 2nd edn. Wiley, New York, pp 329–338

    Google Scholar 

  33. Malapascua J, Jerez C, Sergejevová M, Figueroa FL, Masojídek J (2014) Photosynthesis monitoring to optimize growth of microalgal mass cultures: application of chlorophyll fluorescence techniques. Aquat Biol 22:123–140

    Google Scholar 

  34. Malapascua JR, Ranglová K, Masojídek J (2019) Photosynthesis and growth of Chlorella vulgaris R-117 cultured in internally LED-illuminated photobioreactor. Photosynthetica 57:103–112

    CAS  Google Scholar 

  35. Masojídek J, Torzillo G, Koblížek M, Kopecký J, Bernardini P, Sacchi A, Komenda J (1999) Photoadaptation of two members of the Chlorophyta (Scenedesmus and Chlorella) in laboratory and outdoor cultures: changes of chlorophyll fluorescence quenching and the xanthophyll cycle. Planta 209:126–135

    PubMed  Google Scholar 

  36. Masojídek J, Torzillo G, Kopecký J, Koblížek M, Nidiaci L, Komenda J, Lukavská A, Sacchi A (2000) Changes in chlorophyll fluorescence quenching and pigment composition in the green alga Chlorococcum sp. grown under nitrogen deficiency and salinity stress. J Appl Phycol 12:417–426

    Google Scholar 

  37. Masojídek J, Kopecký J, Giannelli L, Torzillo G (2011a) Productivity correlated to photobiochemical performance of Chlorella mass cultures grown outdoors in thin-layer cascades. J Ind Microbiol Biotechnol 38:307–317

    PubMed  Google Scholar 

  38. Masojídek J, Vonshak A, Torzillo G (2011b) Chlorophyll fluorescence applications in microalgal mass cultures. In: Suggett DJ, Prášil O, Borowitzka MA (eds) Chlorophyll a fluorescence in aquatic sciences: methods and applications. Springer, Dordrecht, pp 277–292

    Google Scholar 

  39. Masojídek J, Torzillo G, Koblížek M (2013) Photosynthesis in microalgal mass culture. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology, 2nd edn. Wiley, New York, pp 21–36

    Google Scholar 

  40. Masojídek J, Ranglová K, Silva Benavides AM, Charvát F, Bečková M, Pilný J, Komenda J, Torzillo G (2017) Physiological shift from heterotrophic to phototrophic growth in a small-antenna-size strain of Chlorella. Abstract in Proceedings of the 6th Congress of the International Society of Applied Phycology, 18–23 June 2017, Nantes, France

  41. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence – a practical guide. J Exp Bot 51:659–668

    CAS  PubMed  Google Scholar 

  42. Melis A, Neidhardt J, Benemann JR (1999) Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells. J Appl Phycol 10:515–525

    Google Scholar 

  43. Mohammad Mirzaie MA, Kalbasi M, Mousavi SM, Ghobadian B (2016) Investigation of mixotrophic, heterotrophic, and autotrophic growth of Chlorella vulgaris under agricultural waste medium. Prep Biochem Biotechnol 46:150–156

    CAS  PubMed  Google Scholar 

  44. Ogbonna JC, Masui H, Tanaka H (1997) Sequential heterotrophic/autotrophic cultivation–an efficient method of producing Chlorella biomass for health food and animal feed. J Appl Phycol 9:359–366

    Google Scholar 

  45. Ralph PJ, Gademann R (2005) Rapid light curves: a powerful tool to assess photosynthetic activity. Aquat Bot 82:222–237

    CAS  Google Scholar 

  46. Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62

    CAS  PubMed  Google Scholar 

  47. Sergejevová M, Masojídek J (2012) Chlorella biomass as feed supplement for freshwater fish: sterlet, Acipenser ruthenus. Aquac Res 44:157–159

    Google Scholar 

  48. Šetlík I, Berková E, Doucha J, Kubín Š, Vendlová J, Zachleder V (1972) The coupling of synthetic and reproduction processes in Scenedesmus quadricauda. Arch Hydrobiol Algol Stud 7:172–213

    Google Scholar 

  49. Shin J-H, Lee B, Jeong B-R, Chang YK (2016) Truncated light-harvesting chlorophyll antenna size in Chlorella vulgaris improves biomass productivity. J Appl Phycol 28:3193–3202

    CAS  Google Scholar 

  50. Silva Benavides AM, Ranglová K, Malapascua JR, Masojídek J, Torzillo G (2017) Diurnal changes of photosynthesis and growth of Arthrospira platensis cultured in a thin-layer cascade and an open pond. Algal Res 28:48–56

    Google Scholar 

  51. Strasser RJ, Srivastava A (1995) Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem Photobiol 61:33–42

    Google Scholar 

  52. Strasser RJ, Tsimili-Michael M, Srivastava A (2004) Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou GC, Govindjee (eds) (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Kluwer, Dordrecht, pp 321–362

    Google Scholar 

  53. Sukenik A, Bennett J, Falkowski P (1987) Light-saturated photosynthesis - limitation by electron-transport or carbon fixation. Biochim Biophys Acta 891:205–215

    CAS  Google Scholar 

  54. Torzillo G, Accolla P, Pinzani E, Masojídek J (1996) In situ monitoring of chlorophyll fluorescence to assess the synergistic effect of low temperature and high irradiance stresses in Spirulina grown in outdoor photobioreactors. J Appl Phycol 8:283–291

    CAS  Google Scholar 

  55. Torzillo G, Bernardini P, Masojídek J (1998) On-line monitoring of chlorophyll fluorescence to assess the extent of photoinhibition of photosynthesis induced by high oxygen concentration and low temperature and its effect on the productivity of outdoor cultures of Spirulina platensis (cyanobacteria). J Phycol 34:504–510

    CAS  Google Scholar 

  56. Van Kooten O, Snel JF (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res 25:147–150

    PubMed  Google Scholar 

  57. Vernotte C, Picaud M, Kirilovsky D, Olive J, Ajlani G, Astier C (1992) Changes in the photosynthetic apparatus in the cyanobacterium Synechocystis sp. PCC 6714 following light-to-dark and dark-to-light transitions. Photosynth Res 32:45–57

    CAS  PubMed  Google Scholar 

  58. Vonshak A, Torzillo G, Accolla P, Tomaselli L (1996) Light and oxygen stress in Spirulina platensis (cyanobacteria) grown outdoors in tubular reactors. Physiol Plant 97:175–179

    CAS  Google Scholar 

  59. Vonshak A, Torzillo G, Masojidek J, Boussiba S (2001) Sub-optimal morning temperature induces photoinhibition in dense outdoor cultures of the alga Monodus subterraneus (Eustigmatophyta). Plant Cell Environ 24:1113–1118

    Google Scholar 

  60. Wan M, Zhang Z, Wang J, Huang JK, Fan JH, Yu AQ, Wang WL, Li YG (2015) Sequential heterotrophy-dilution-photoinduction cultivation of Haematococcus pluvialis for efficient production of astaxanthin. Bioresour Technol 198:557–563

    CAS  PubMed  Google Scholar 

  61. Wellburn AR (1994) The spectral determination of chlorophyll a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

    CAS  Google Scholar 

  62. White S, Anandraj A, Bux F (2011) PAM fluorometry as a tool to assess microalgal nutrient stress and monitor cellular neutral lipids. Bioresour Technol 102:1675–1682

    CAS  PubMed  Google Scholar 

  63. Zachleder V, Šetlík I (1982) Effect of irradiance on the course of RNA synthesis in the cell cycle of Scenedesmus quadricauda. Biol Plant 24:341–353

    CAS  Google Scholar 

  64. Zaťková I, Sergejevová M, Urban J, Vachta R, Štys D, Masojídek J (2011) Carotenoid-enriched microalgal biomass as feed supplement for freshwater ornamentals: albinic form of wels catfish (Silurus glanis). Aquac Nutr 17:278–286

    Google Scholar 

  65. Zheng Y, Chi Z, Lucker B, Chen S (2012) Two-stage heterotrophic and phototrophic culture strategy for algal biomass and lipid production. Bioresour Technol 103:484–488

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Ms Soňa Pekařová, Mr Jan Hinterholzinger and Mr Stanislav Pumpr for technical assistance.

Funding

Majority of trials were carried out in the framework of the bilateral scientific agreement between the Czech Academy of Sciences and National Council of Research of Italy (reg. no. CNR-16-29). The research was also funded by the EU programme Horizon 2020, project SABANA (grant no.727874) and in part by the National Sustainability Programme of the Ministry of Education, Youth and Sports of the Czech Republic (project Algatech Plus LO1416) The stay ofA.B. in the Czech Republic was supported by stipend from the Iran National Science Foundation (INSF).

Author information

Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Cultivation of microalgae, measurements, data collection and sample analysis were performed by Azadeh Babaei, Karolína Ranglová, Jose R. Malapascua, Giuseppe Torzillo, Ana M. Silva Benavides and Jiří Masojídek. The draft of the manuscript and figures were prepared by Azadeh Babaei and Jalal Shayegan. The authors commented and contributed on all versions; they read and approved the final manuscript. Jiří Masojídek prepared a concept of experiments and revised and finalized the manuscript as corresponding author.

Corresponding author

Correspondence to Jiří Masojídek.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Babaei, A., Ranglová, K., Malapascua, J.R. et al. Photobiochemical changes in Chlorella g120 culture during trophic conversion (metabolic pathway shift) from heterotrophic to phototrophic growth regime. J Appl Phycol 32, 2807–2818 (2020). https://doi.org/10.1007/s10811-020-02137-w

Download citation

Keywords

  • Chlorella
  • Chlorophyll fluorescence
  • Heterotrophy
  • Photosynthesis
  • Respiration
  • Trophic conversion