Skip to main content

Advertisement

Log in

Macromolecule extracted from Gracilaria caudata reduces inflammation and restores hepatic function in nimesulide-induced hepatic damage

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Seaweeds are a source of novel bioactive compounds such as sulfated polysaccharides (PLS) that are not found in plants, but that may confer health-promoting properties. Sulfated polysaccharides extracted from seaweeds have several biologically beneficial effects. The PLS extracted from the red alga Gracilaria caudata are known to have anti-inflammatory, antinociceptive, and gastroprotective activities. The present study aimed to evaluate the hepatoprotective effect of PLS obtained from G. caudata on a nimesulide-induced liver damage model. Hepatic lesions were induced in mice by oral doses of nimesulide (200 mg kg−1) administered once daily for 5 days. Once a day, 30 min after administration of nimesulide, PLS was administered intraperitoneally at concentrations of 2.5, 5, and 10 mg kg−1. Subsequently, blood was collected for biochemical tests and the liver was removed to evaluate inflammatory parameters. Administration of PLS at the dose of 10 mg kg−1 led to a significant reduction in hepatic injury, liver weight/animal weight ratio, the levels of a neutrophil migration marker (myeloperoxidase), pro-inflammatory cytokines (interleukin-1β and tumor necrosis factor-α), nitrate and nitrite, oxidative stress markers, and hepatic function markers. As per our results, the PLS extracted from G. caudata was able to modulate the inflammatory response in nimesulide-induced hepatic damage in addition to re-establishing the hepatic homeostatic functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Alencar POC, Lima GC, Barros FCN, Costa LEC, Ribeiro CVPE, Sousa WM, Sombra VG, Abreu CMWS, Abreu ES, Pontes EOB, Oliveira AC, De Paula RCM, Freitas ALP (2019) A novel antioxidant sulfated polysaccharide from the algae Gracilaria caudata: in vitro and in vivo activities. Food Hydrocoll 90:28–34

    Article  CAS  Google Scholar 

  • Andrade RJ, Lucena MI, Fernandez MC, Pelaez G, Pachkoria K, García–Ruiz E, García–Muñoz B, González–Grande R, Pizarro A, Durán JA, Jiménez M, Rodrigo L, Romero–Gomez M, Navarro JM, Planas R, Costa J, Borras A, Soler A, Salmerón J, Martin–Vivaldi R (2005) Drug-induced liver injury: an analysis of 461 incidences submitted to the Spanish registry over a 10-year period. Gastroenterology 129:512–521

    Article  PubMed  Google Scholar 

  • Bakr RO, Fayed MAA, Fayez AM, Gabr SK, El-Fishawy AM, El-Alfy TS (2019) Hepatoprotective activity of Erythrina × neillii leaf extract and characterization of its phytoconstituents. Phytomedicine 53:9–17

  • Barman PK, Mukherjee R, Prusty BK, Suklabaidya S, Senapati S, Ravindran B (2016) Chitohexaose protects against acetaminophen-induced hepatotoxicity in mice. Cell Death Dis 7:2224

    Article  CAS  Google Scholar 

  • Barros FCN, Da Silva DC, Sombra VG, MacIel JS, Feitosa JPA, Freitas ALP, De Paula RCM (2013) Structural characterization of polysaccharide obtained from red seaweed Gracilaria caudata (J Agardh). Carbohydr Polym 92:598–603

    Article  CAS  PubMed  Google Scholar 

  • Bessone F (2010) Non-steroidal anti-inflammatory drugs: what is the actual risk of liver damage? World J Gastroenterol 16:5651–5661

    Article  PubMed  PubMed Central  Google Scholar 

  • Bilan MI, Usov AI (2008) Structural analysis of fucoidans. Nat Prod Commun 3:1639–1648

    CAS  Google Scholar 

  • Boelsterli UA (2002) Mechanisms of NSAID-induced hepatotoxicity. Drug Saf 25:633–648

    Article  CAS  PubMed  Google Scholar 

  • Boelsterli UA, Ho HK, Zhou S, Yeowleow K (2006) Bioactivation and hepato-toxicity of nitroaromatic drugs. Curr Drug Metab 7:715–727

    Article  CAS  PubMed  Google Scholar 

  • Bradley PP, Priebat DA, Christensen RD, Rothstein G (1982) Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. Invest Dermatol 78:206–209

    Article  CAS  Google Scholar 

  • Brito TV, Prudêncio RDS, Sales AB, Vieira Júnior FDC, Candeira SJN, Franco ÁX, Aragão KS, Ribeiro RDA, Ponte De Souza MHL, Chaves LDS, Freitas ALP, Medeiros JVR, Dos Reis Barbosa AL (2013) Anti-inflammatory effect of a sulphated polysaccharide fraction extracted from the red algae Hypnea musciformis via the suppression of neutrophil migration by the nitric oxide signalling pathway. J Pharm Pharmacol 65:724–733

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee M, Sil PC (2006) Hepatoprotective effect of aqueous extract of Phyllanthus niruri on nimesulide-induced oxidative stress in vivo. Indian J Biochem Biophys 43:299–305

    CAS  PubMed  Google Scholar 

  • Chatterjee M, Sil PC (2007) Protective role of Phyllanthus niruri against nimesulide induced hepatic damage. Indian J Clin Biochem 22:109–116

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaves LDS, Nicolau LAD, Silva RO, Barros FCN, Freitas ALP, Aragão KS, Ribeiro RDA, Souza MHLP, Barbosa ALDR, Medeiros JVR (2013) Antiinflammatory and antinociceptive effects in mice of a sulfated polysaccharide fraction extracted from the marine red algae Gracilaria caudata. Immunopharm Immunotoxicol 35:93–100

    Article  CAS  Google Scholar 

  • Costa LS, Fidelis GP, Cordeiro SL, Oliveira RM, Sabry DA, Câmara RBG, Nobre LTDB, Costa MSSP, Almeida-Lima J, Farias EHC, Leite EL, Rocha HAO (2010) Biological activities of sulfated polysaccharides from tropical seaweeds. Biomed Pharmacother 64:21–28

    Article  CAS  PubMed  Google Scholar 

  • Dedon PC, Tannenbaum SR (2004) Reactive nitrogen species in the chemical biology of inflammation. Arch Biochem Biophys 423:12–22

    Article  CAS  PubMed  Google Scholar 

  • Figueras A, Estevez F, Laporte JR (1999) New drugs, new adverse drug reactions, and bibliographic databases. Lancet 353:1447–1448

    Article  CAS  PubMed  Google Scholar 

  • Gallelli L, Ferraro M, Mauro GF, De Fazio S, De Sarro G (2005) Nimesulide-induced hepatotoxicity in a previously healthy woman. Clin Drug Invest 25:421–424

    Article  CAS  Google Scholar 

  • Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem 126:131–138

    Article  CAS  PubMed  Google Scholar 

  • Gurpilhares D d B, Moreira TR, Bueno J d L, Cinelli LP, Mazzola PG, Pessoa A, Sette LD (2016) Algae’s sulfated polysaccharides modifications: potential use of microbial enzymes. Process Biochem 51:989–998

    Article  CAS  Google Scholar 

  • Holt MP, Ju C (2006) Mechanisms of drug-induced liver injury. AAPS J 8:48–54

    Article  Google Scholar 

  • Hsu CC, Lin CC, Liao TS, Yin MC (2006) Protective effect of s-allyl cysteine and s-propyl cysteine on acetaminophen-induced hepatotoxicity in mice. Food Chem Toxicol 44:393–397

    Article  CAS  PubMed  Google Scholar 

  • Kang P, Dalvie D, Smith E, Renner M (2009) Bioactivation of lumiracoxib by peroxidases and human liver microsomes: identification of multiple quinone imine intermediates and GSH adducts. Chem Res Toxicol 22:106–117

    Article  CAS  PubMed  Google Scholar 

  • Kowaltowski AJ, Castilho RF, Vercesi AE (2001) Mitochondrial permeability transition and oxidative stress. FEBS Lett 495:12–15

    Article  CAS  PubMed  Google Scholar 

  • Kus I, Colakoglu N, Pekmez H, Seckin D, Ogetürk M, Sarsilmaz M (2004) Protective effects of caffeic acid phenethyl ester (CAPE) on carbon tetrachloride-induced hepatotoxicity in rats. Acta Histochem 106:289–297

    Article  CAS  PubMed  Google Scholar 

  • Leone A, Nie A, Brandon PJ, Sawant S, Piechta LA, Kelley MF, Mark KL, Jim PS, Verheyen G, Johnson MD, Lord PG, Mcmillian MK (2014) Oxidative stress/reactive metabolite gene expression. Signature in rat liver detects idiosyncratic hepatotoxicants. Toxicol Appl Pharmacol 275:189–197

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Sha K, Zhang L, Liu X, Yang F, Cheng J (2019) Protective effects of alpinetin on lipopolysaccharide/D-Galactosamine-induced liver injury through inhibiting inflammatory and oxidative responses. Microbial Pathogen 126:239–244

    Article  CAS  Google Scholar 

  • Lucena MI, Camargo R, Andrade RJ, Perez-Sanchez CJ, De La Cuesta FS (2001) Comparison of two clinical scales for causality assessment in hepatotoxicity. Hepatology 33:123–130

    Article  CAS  PubMed  Google Scholar 

  • Marik C, Felts PA, Bauer J, Lassmann H, Smith KJ (2007) Lesion genesis in a subset of patients with multiple sclerosis: a role for innate immunity? Brain 130:2800–2815

    Article  PubMed  PubMed Central  Google Scholar 

  • Mazraati P, Minaiyan M (2018) Hepatoprotective effect of metadoxine on acetaminophen-induced liver toxicity in mice. Adv Biomed Res 7:67

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Merlani G, Fox M, Oehen HP, Cathomas G, Renner EL, Fattinger K, Schnee-Mann M, Kullak-Ublick GA (2001) Fatal hepatoxicity secondary to nimesulide. Eur J Clin Pharmacol 57:321–326

    Article  CAS  PubMed  Google Scholar 

  • Mihara M, Uchiyama M (1978) Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem 86:271–278

    Article  CAS  PubMed  Google Scholar 

  • Nguyen V, Huang J, Doan V, Lin X, Tang X, Huang Y, Tang A, Yang X, Huang R (2015) Hepatoprotective effects of Yulangsan polysaccharide against nimesulide-induced liver injury in mice. J Ethnopharmacol 172:273–280

    Article  CAS  PubMed  Google Scholar 

  • Ong MM, Wang AS, Leow KY, Khoo YM, Boelsterli UA (2006) Nimesulide-induced hepatic mitochondrial injury in heterozygous Sod2+/− mice. Free Rad Biol Med 40:420–429

    Article  CAS  PubMed  Google Scholar 

  • Oren A, Taylor JM (1995) The subcellular localization of defensins and myeloperoxidase in human neutrophils: immunocytochemical evidence for azurophil granule heterogeneity. J Lab Clin Med 125:340–347

    CAS  PubMed  Google Scholar 

  • Qu B, Li QT, Wong KP, Tan TM, Halliwell B (2001) Mechanism of clofibrate hepatotoxicity: mitochondrial damage and oxidative stress in hepatocytes. Free Ras Biol Med 31:659–669

    Article  CAS  Google Scholar 

  • Quinderé ALG, Fontes BP, Vanderlei EDSO, De Queiroz INL, Rodrigues JAG, De Araújo IWF, Jorge RJB, De Menezes DB, Silva AAR, Chaves HV, Evangelista JSAM, Bezerra MM, Benevides NMB (2013) Peripheral antinociception and anti-edematogenic effect of a sulfated polysaccharide from Acanthophora muscoides. Pharmacol Rep 65:600–613

    Article  PubMed  Google Scholar 

  • Romero-Gomez M, Santos MN, Fernandez MAO, Fovelo MJ, Suarez-Garcia E, Fernandez MC (1999) Acute cholestatic hepatites induced by nimesulide. Liver 19:164–165

    Article  CAS  PubMed  Google Scholar 

  • Sabaté M, Ibáñez L, Pérez E, Vidal X, Buti M, Xiol X, Mas A, Guarner C, Forné M, Solà R, Castellote J, Rigau J, Laporte JR (2007) Risk of acute liver injury associated with the use of drugs: a multicentre population survey. Ailement Pharmacol Ther 25:1401–1409

    Article  CAS  Google Scholar 

  • Schattner A, Sokolovskaya N, Cohen J (2000) Fatal hepatitis and renal failure during treatment with nimesulide. J Intern Med 247:153–155

    Article  CAS  PubMed  Google Scholar 

  • Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 24:1992–2005

    Google Scholar 

  • Silva RO, Pereira Dos Santos GM, Duarte Nicolau LA, Lucetti LT, Macedo Santana AP, De Souza CL, Nogueira Barros FC, Ponte Freitas AL, Ponte Souza MHL, Medeiros JVR (2011) Sulfated-polysaccharide fraction from red algae Gracilaria caudata protects mice gut against ethanol-induced damage. Mar Drugs 9:2188–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh BK, Tripathi M, Chaudhari BP, Pandey PK, Kakkar P (2012) Natural terpenes prevent mitochondrial dysfunction, oxidative stress and release of apoptotic proteins during nimesulide-hepatotoxicity in rats. PLoS One 7:e0034200

    Google Scholar 

  • Stadlmann S, Zoller H, Vogel W, Offner FA (2002) COX-2 inhibitor (nimesulide) induced acute liver failure. Virchows Arch 440:553–555

    Article  CAS  PubMed  Google Scholar 

  • Tan HH, Ong WM, Lai SH, Chow WC (2007) Nimesulide-induced hepatotoxicity and fatal hepatic failure. Singap Med J 48:582–585

    CAS  Google Scholar 

  • Van Steenbergen W, Peeters P, De Bondt J, Staessen D, Büscher H, Laporta T, Roskams T, Desmet V (1998) Nimesulide induced acute hepatitis: evidence from six cases. J Hepatol 29:135–141

    Article  PubMed  Google Scholar 

  • Vasconcelos DFP, Pereira da Silva FR, Pinto MSC, Santana LAB, Souza IG, Miranda de Souza LK, Oliveira NCM, Ventura CA, Novaes PD, Barbosa ALR, Medeiros JVR, Mikolasevic I, Mani A, Soares de Oliveira J (2017) Decrease of pericytes is associated with liver disease caused by ligature-induced periodontitis in rats. J Periodontol 88:49–57

    Article  Google Scholar 

  • Wang Y, Zeng Y, Xu F (2011) Drug safety issues of nimesulide in China-nimesulide-induced liver injury. Pharmacoepidemiol Drug Saf:778–779

  • Wells ML, Potin P, Craigie JS, Raven JA, Merchant SS, Helliwell KE, Smith AG, Camire ME, Brawley SH (2017) Algae as nutritional and functional food sources: revisiting our understanding. J Appl Phycol 29:949–982

    Article  CAS  PubMed  Google Scholar 

  • Xu XY, Hu JN, Liu Z, Zhang R, He YF, Hou W, Wang ZQ, Yang G, Li W (2017) Saponins (Ginsenosides) from the leaves of Panax quinquefolius ameliorated acetaminophen-induced hepatotoxicity in mice. J Agric Food Chem 65:3684

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors received financial and structural support from the Brazilian Agency for Scientific and Technological Development-CNPq (Brazil) and Federal University of Piauí, UFPI (Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Luiz dos Reis Barbosa.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Júnior, G.J.D., Lemos, S.I.A., de Brito, T.V. et al. Macromolecule extracted from Gracilaria caudata reduces inflammation and restores hepatic function in nimesulide-induced hepatic damage. J Appl Phycol 32, 1511–1520 (2020). https://doi.org/10.1007/s10811-020-02039-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-020-02039-x

Keywords