Skip to main content
Log in

Optimized cryopreservation of Ettlia sp. using short cold acclimation and controlled freezing procedure

Journal of Applied Phycology Aims and scope Submit manuscript

Cite this article

Abstract

Despite widespread use as a preservation method, cryopreservation remains recalcitrant for microalgae preservation due to low viability and strain specificity. Herein, a cryopreservation method for Ettlia sp. YC001 was optimized using the following strategies. Cold acclimation at 4 °C for 24 h prior to the freezing procedure enhanced the expression of the cold response pathway and heat-shock proteins, helping to both stabilize the proteins against cold stress and prevent rapid dehydration. Three independent parameters of cryopreservation, the cooling rate, plunge temperature, and thawing temperature, were optimized with various cryoprotectants using a response surface methodology (RSM). Finally, the cellular damage was minimized when using the optimized controlled cooling procedure with an accurate programmable freezer. When applying the optimized conditions, the cell viability of the cryopreserved strain YC001 was > 90% after 1 year. It is believed that the suggested approach can also be applied to other commercial microalgal strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbeel EVD, Schneider U, Liu J, Agca Y, Critser JK, Steirteghem AV (2007) Osmotic responses and tolerance limits to changes in external osmolalities, and oolemma permeability characteristics, of human in vitro matured MII oocytes. Hum Reprod 22:1959–1972

    Article  PubMed  Google Scholar 

  • Brand JJ, Diller KR (2004) Application and theory of algal cryopreservation. Nova Hedwigia 79:175–189

    Article  Google Scholar 

  • Cañavate JP, Lubian LM (1995) Relationship between cooling rates, cryoprotectant concentrations and salinities in the cryopreservation of marine microalgae. Mar Biol 124:325–334

    Article  Google Scholar 

  • Chang Y, Reed BM (2000) Extended alternating-temperature cold acclimation and culture duration improve pear shoot cryopreservation. Cryobiology 40:311–322

    Article  CAS  PubMed  Google Scholar 

  • Chen TH, Gusta LV (1983) Abscisic acid-induced freezing resistance in cultured plant cells. Plant Physiol 73:71–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M, Zhu JK (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17:1043–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu JK (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12:444–451

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Zhu JK, Sunkar R (2010) Gene regulation during cold stress acclimation in plants. Methods Mol Biol 639:39–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crutchfield AL, Diller KR, Brand JJ (1999) Cryopreservation of Chlamydomonas reinhardtii (Chlorophyta). Eur J Phycol 34:43–52

    Article  Google Scholar 

  • Day JG, Fenwick C (1993) Cryopreservation of members of the genus Tetraselmis used in aquaculture. Aquaculture 118:151–160

    Article  Google Scholar 

  • Day JG, Fleck RA (2015) Cryo-injury in algae and the implications this has to the conservation of micro-algae. Microalgae Biotechnol 1:1–11

    Article  Google Scholar 

  • Day JG, Watanabe MM, Morris GJ, Fleck RA, McLellan MR (1997) Long-term viability of preserved eukaryotic algae. J Appl Phycol 9:121–127

    Article  Google Scholar 

  • Day JG, Fleck RA, Benson EE (2000) Cryopreservation-recalcitrance in microalgae: novel approaches to identify and avoid cryo-injury. J Appl Phycol 12:369–377

    Article  Google Scholar 

  • Doherty CJ, Buskirk HAV, Myers SJ, Thomashow MF (2009) Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell 21:972–984

  • Dong CH, Agarwal M, Zhang Y, Xie Q, Zhu JK (2006) The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc Natl Acad Sci 103:8281–8286

    Article  CAS  PubMed  Google Scholar 

  • Guermazi W, Sellami-Kammoun A, Elloumi J, Drira Z, Aleya L, Marangoni R, Ayadi H, Maalej S (2010) Microalgal cryo-preservation using dimethylsulfoxide (Me2SO) coupled with two freezing protocols: influence on the fatty acid profile. J Therm Biol 35:175–181

    Article  CAS  Google Scholar 

  • Hipkin R, Day JG, Rad-Menéndez C, Mock T (2014) The first evidence for genotypic stability in a cryopreserved transgenic diatom. J Appl Phycol 26:65–71

    Article  CAS  Google Scholar 

  • Kiang JG, Tsokos GC (1998) Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology. Pharmacol Ther 80:183–201

    Article  CAS  PubMed  Google Scholar 

  • Knight H, Knight MR (2000) Imaging spatial and cellular characteristics of low temperature calcium signature after cold acclimation in Arabidopsis. J Exp Bot 51:1679–1686

    Article  CAS  PubMed  Google Scholar 

  • Knight MR, Campbell AK, Smith SM, Trewavas AJ (1991) Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature 352:524–526

    Article  CAS  PubMed  Google Scholar 

  • Kuwayama M, Vajta G, Kato O, Leibo SP (2005) Highly efficient vitrification method for cryopreservation of human oocytes. Reprod BioMed Online 11:300–308

    Article  PubMed  Google Scholar 

  • Lee HG, Shin SY, Jin L, Yoo C, Srivastava A, La HJ, Ahn CY, Kim HS, Oh HM (2015) Establishment and maintenance of an axenic culture of Ettlia sp. using a species-specific approach. Biotechnol Bioprocess Eng 20:1056–10634

    Article  CAS  Google Scholar 

  • Lee HG, Song HJ, Kim DS, Cho CH, La HJ, Oh HM, Yoon HS (2016) Unique mitochondrial genome structure of the green algal strain YC001 (Sphaeropleales, Chlorophyta), with morphological observations. Phycologia 55:72–78

    Article  CAS  Google Scholar 

  • Lee JW, Shin SY, Kim HS, Jin E, Lee HG, Oh HM (2017) Lipid turnover between membrane lipids and neutral lipids via inhibition of diacylglyceryl N,N,N-trimethylhomoserine synthesis in Chlamydomonas reinhardtii. Algal Res 27:162–169

    Article  Google Scholar 

  • Miura K, Jin JB, Lee J, Yoo CY, Stirm V, Miura T, Ashworth EN, Bressan RA, Yun DJ, Hasegawa PM (2007) SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell 19:1403–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris GJ (1976) The cryopreservation of Chlorella. 2. Effect of growth temperature on freezing tolerance. Arch Microbiol 107:309–312

    Article  CAS  PubMed  Google Scholar 

  • Mortain-Bertrand A, Etchart F, de Boucaud M-T (1996) A method for the cryoconservation of Dunaliella salina (Chlorophyceae): effect of glycerol and cold adaptation. J Phycol 32:346–352

    Article  CAS  Google Scholar 

  • Mutanda T, Ramesh D, Karthikeyan S, Kumari S, Anandraj A, Bux F (2011) Bioprospecting for hyper-lipid producing microalgal strains for sustainable. Bioresour Technol 102:57–70

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi K, Deuchi K, Kuwano K (2012) Cryopreservation of four valuable strains of microalgae, including viability and characteristics during 15 years of cryostorage. J Appl Phycol 24:1381–1385

    Article  CAS  Google Scholar 

  • Pringsheim EG (1946) Pure cultures of algae: their preparation and maintenance. Cambridge University Press, Cambridge

    Google Scholar 

  • Rihan HZ, Al-Issawi M, Fuller MP (2017) Advances in physiological and molecular aspects of plant cold tolerance. J Plant Interact 12:143–157

    Article  CAS  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Saadaoui I, Al Emadi M, Bounnit T, Schipper K, Al Jabri H (2016) Cryopreservation of microalgae from desert environments of Qatar. J Appl Phycol 28:2233–2240

    Article  CAS  Google Scholar 

  • Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23:319–327

    Article  CAS  PubMed  Google Scholar 

  • Segreto R, Hassel K, Bardal R, Stenøien HK (2010) Desiccation tolerance and natural cold acclimation allow cryopreservation of bryophytes without pretreatment or use of cryoprotectants. Bryologist 113:760–769

    Article  Google Scholar 

  • Seo SH, Ha JS, Yoo C, Srivastava A, Ahn CY, Cho DH, La HJ, Han MS, Oh HM (2017) Light intensity as major factor to maximize biomass and lipid productivity of Ettlia sp. in CO2-controlled photoautotrophic chemostat. Bioresour Technol 244:621–628

    Article  CAS  PubMed  Google Scholar 

  • Shivakumar SB, Bharti D, Jang SJ, Hwang SC, Park JK, Shin JK, Byun JH, Park BW, Rho GJ (2015) Cryopreservation of human Wharton’s jelly-derived mesenchymal stem cells following controlled rate freezing protocol using different cryoprotectants; a comparative study. Int J Stem Cells 8:155–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steponkus PL, Dowgert MF, Gordon-Kamm WJ (1983) Destabilization of the plasma membrane of isolated plant protoplasts during a freeze-thaw cycle: the influence of cold acclimation. Cryobiology 20:448–465

    Article  CAS  PubMed  Google Scholar 

  • Tao D, Li PH (1986) Classification of plant cell cryoprotectants. J Theor Biol 123:305–310

    Article  CAS  Google Scholar 

  • Taylor R, Fletcher RL (1998) Cryopreservation of eukaryotic algae–a review of methodologies. J Appl Phycol 10:481–501

    Article  Google Scholar 

  • Valledor L, Furuhashi T, Hanak AM, Weckwerth W (2013) Systemic cold stress adaptation of Chlamydomonas reinhardtii. Mol Cell Proteomics 12:2032–2047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe MM, Shimizu A, Satake KN (1992) NIES-microbial culture collection at the National Institute for Environmental Studies: cryopreservation and database of culture strains of microalgae. In: Watanabe MM (ed) Proceedings of the symposium on culture collection of algae. NIES, Tsukuba, pp 33–41

    Google Scholar 

  • Yoo C, Choi GG, Kim SC, Oh HM (2013) Ettlia sp. YC001 showing high growth rate and lipid content under high CO2. Bioresour Technol 127:482–488

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Xue X, Yan J, Yan LY, Jin XH, Zhu XH, He ZZ, Liu J, Li R, Qiao J (2016) L-proline: a highly effective cryoprotectant for mouse oocyte vitrification. Sci Rep 6:26326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This article was written in memory of the dedication, scientific creativity, and warmth of Dr. Hyun-Joon La, who passed away on 13 February 2016.

Funding

This research was supported equally by the Advanced Biomass R&D Center, a Global Frontier Program, funded by the Korean Ministry of Science and ICT (2010-0029723) and the National Research Foundation of Korea (NRF) via a grant funded by the Korean government (NRF-2018R1C1B3009513).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyung-Gwan Lee or Hee-Mock Oh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 21 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, JS., Lee, JW., Seo, SH. et al. Optimized cryopreservation of Ettlia sp. using short cold acclimation and controlled freezing procedure. J Appl Phycol 31, 2277–2287 (2019). https://doi.org/10.1007/s10811-019-1743-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-019-1743-z

Keywords

Navigation