Skip to main content

Development of a monitoring tool based on fluorescence and climatic data for pigments profile estimation in Dunaliella salina

Abstract

When growing microalgae for biorefinery processes, a high product yield is desired. For that reason, monitoring the concentration of the desired products during growth and products induction procedure is of great interest. 2D Fluorescence spectroscopy is a fingerprinting technique, used in situ and at real time, with a high potential for online monitoring of biological systems. In this work, Dunaliella salina pigment content was monitored using fluorescence data coupled with chemometric tools. Climatic parameters were also used as input variables due to their impact on the pigments profile in outdoor cultivations. Predictive models were developed for chlorophyll content (a, b, and total) with variance captured between 50 and 90%, and R2 varying between 0.6 and 0.9 for both training and validation data sets. Total carotenoids models captured 70 to 80% of variance, and R2 between 0.7 and 0.9, for training and validation. Models for specific carotenoids (zeaxanthin, α-carotene, all-trans-β-carotene, and 9-cis-β-carotene) captured variance between 60 and 90%, with validation and training R2 between 0.6 and 0.9. With this methodology, it was possible to calibrate a monitoring tool for pigments quantification, as a bulk and as individual compounds, proving that 2D fluorescence spectroscopy and climatic data combined with chemometric tools can be used to assess simultaneously and at real time different pigments in D. salina biomass production.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Andersson CA, Bro R (2000) The N-way toolbox for MATLAB. Chemom Intell Lab Syst 52:1–4

    CAS  Article  Google Scholar 

  • Ben-Amotz A (2004) Industrial production of microalgal cell-mass and secondary products—major industrial species: Dunaliella. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science, Oxford pp 273–280

  • Benito-Peña E, Valdés MG, Glahn-Martínez B, Moreno-Bondi MC (2016) Fluorescence based fiber optic and planar waveguide biosensors: a review. Anal Chim Acta 943:17–40

    Article  Google Scholar 

  • Biechele P, Busse C, Solle D, Scheper T, Reardon K (2015) Sensor systems for bioprocess monitoring. Eng Life Sci 15:469–488

    CAS  Article  Google Scholar 

  • Boggia R, Forina M, Fossa P, Mosti L (1997) Chemometric study and validation strategies in the structure-activity relationships of new cardiotonic agents. Quant Struct-Act Relat 16:201–213

    CAS  Article  Google Scholar 

  • Chen J, Wei D, Pohnert G (2017) Rapid estimation of astaxanthin and the carotenoid-to-chlorophyll ratio in the green microalga Chromochloris zofingiensis using flow cytometry. Mar Drugs 15:1–23

    CAS  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, Mcnally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Article  Google Scholar 

  • Dufossé L, de Echanove MC (2005) The last step in the biosynthesis of aryl carotenoids in the cheese ripening bacteria Brevibacterium linens ATCC 9175 (Brevibacterium aurantiacum sp. nov.) involves a cytochrome P450-dependent monooxygenase. Food Res Int 38:967–973

  • Farhat N, Rabhi M, Falleh H, Jouini J, Abdelly C, Smaoui A (2011) Optimization of salt concentrations for a higher carotenoid production in Dunaliella salina (Chlorophyceae). J Phycol 47:1072–1077

    CAS  Article  Google Scholar 

  • Galinha CF, Carvalho G, Portugal CAM, Guglielmi G, Reis MAM, Crespo JG (2011) Two-dimensional fluorescence as a fingerprinting tool for monitoring wastewater treatment systems. J Chem Technol Biotechnol 86:985–992

    CAS  Article  Google Scholar 

  • Galinha CF, Carvalho G, Portugal CAM, Guglielmi G, Reis MAM, Crespo JG (2012) Multivariate statistically-based modelling of a membrane bioreactor for wastewater treatment using 2D fluorescence monitoring data. Water Res 46:3623–3636

    CAS  Article  Google Scholar 

  • Glindkamp A, Riechers D, Rehbock C, Hitzmann B, Scheper T, Reardon KF (2009) Sensors in disposable bioreactors status and trends. Adv Biochem Eng Biotechnol 115:145–169

    CAS  PubMed  Google Scholar 

  • Hantelmann K, Kollecker M, Hüll D, Hitzmann B, Scheper T (2006) Two-dimensional fluorescence spectroscopy: a novel approach for controlling fed-batch cultivations. J Biotechnol 121:410–417

    CAS  Article  Google Scholar 

  • Henriques JG, Buziol S, Stocker E, Voogd A, Menezes JC (2010) Monitoring mammalian cell cultivations for monoclonal antibody production using near-infrared spectroscopy. In: Scheper T, Rao G (eds) Optical sensor systems in biotechnology. Springer, Berlin, pp 29–72

    Google Scholar 

  • Hu J, Nagarajan D, Zhang Q, Chang J, Lee D (2018) Heterotrophic cultivation of microalgae for pigment production : a review. Biotechnol Adv 36:54–67

    CAS  Article  Google Scholar 

  • Karakach TK, McGinn PJ, Choi J, MacQuarrie SP, Tartakovsky B (2015) Real-time monitoring, diagnosis, and time-course analysis of microalgae Scenedesmus AMDD cultivation using dual excitation wavelength fluorometry. J Appl Phycol 27:1823–1832

    CAS  Article  Google Scholar 

  • Kleinegris DMM, van Es MA, Janssen M, Brandenburg WA, Wijffels RH (2010) Carotenoid fluorescence in Dunaliella salina. J Appl Phycol 22:645–649

    CAS  Article  Google Scholar 

  • Lai Y, Karam AL, Sederoff HW, Ducoste JJ, de los Reyes FL (2019) Relating nitrogen concentration and light intensity to the growth and lipid accumulation of Dunaliella viridis in a photobioreactor. J Appl Phycol:1–13. https://doi.org/10.1007/s10811-019-01897-4

  • Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, New York

    Book  Google Scholar 

  • Leu K-L, Hsu B-D (2005) A programmed cell disintegration of Chlorella after heat stress. Plant Sci 168:145–152

    CAS  Article  Google Scholar 

  • Liechtenthaler H (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  Google Scholar 

  • Merzlyak MN, Chivkunova OB, Gorelova OA, Reshetnikova IV, Solovchenko AE, Khozin-Goldberg I, Cohen Z (2007) Effect of nitrogen starvation on optical properties, pigments, and arachidonic acid content of the unicellular green alga Parietochloris incisa (Trebouxiophyceae, Chlorophyta). J Phycol 43:833–843

    CAS  Article  Google Scholar 

  • Moberg L, Robertsson G, Karlberg B (2001) Spectrofluorimetric determination of chlorophylls and pheopigments using parallel factor analysis. Talanta 54:161–170

    CAS  Article  Google Scholar 

  • Myneni R, Knyazikhin Y, Park T (2015) MCD15A3H MODIS/Terra+aqua leaf area index/FPAR 4-day L4 global 500m SIN grid V006 [data set]. NASA EOSDIS L Process DAAC

  • Nguyen BT, Rittmann BE (2018) Low-cost optical sensor to automatically monitor and control biomass concentration in microalgal cultivation. Algal Res 32:101–106

    Article  Google Scholar 

  • Pawlowski S, Galinha CF, Crespo JG, Velizarov S (2016) 2D fluorescence spectroscopy for monitoring ion-exchange membrane based technologies—reverse electrodialysis (RED). Water Res 88:184–198

    CAS  Article  Google Scholar 

  • Petry FC, Mercadante AZ (2016) Composition by LC-MS/MS of new carotenoid esters in mango and citrus. J Agric Food Chem 64:8207–8224

    CAS  Article  Google Scholar 

  • Ranzan C, Trierweiler LF, Hitzmann B, Trierweiler JO (2012) Fluorescence spectroscopy as a tool for ethanol fermentation on-line monitoring. IFAC Proc 8:940–945

    Article  Google Scholar 

  • Sá M, Monte J, Brazinha C, Galinha CF, Crespo JG (2017) 2D fluorescence spectroscopy for monitoring Dunaliella salina concentration and integrity during membrane harvesting. Algal Res 24:325–332

    Article  Google Scholar 

  • Saini RK, Keum Y-S (2019) Microbial platforms to produce commercially vital carotenoids at industrial scale: an updated review of critical issues. J Ind Microbiol Biotechnol 46:657–674

    CAS  Article  Google Scholar 

  • Sandnes JM, Ringstad T, Wenner D, Heyerdahl PH, Källqvist T, Gislerød HR (2006) Real-time monitoring and automatic density control of large-scale microalgal cultures using near infrared (NIR) optical density sensors. J Biotechnol 122:209–215

    CAS  Article  Google Scholar 

  • Schoefs B (2002) Chlorophyll and carotenoid analysis in food products. Properties of the pigments and methods of analysis. Trends Food Sci Technol 13:361–371

    CAS  Article  Google Scholar 

  • Schügerl K (2001) Progress in monitoring, modeling and control of bioprocesses during the last 20 years. J Biotechnol 85:149–173

    Article  Google Scholar 

  • Shaw AD, Kaderbhai N, Jones A, Woodward AM, Goodacre R, Rowland JJ, Kell DB (1999) Noninvasive , on-line monitoring of the biotransformation by yeast of glucose to ethanol using dispersive raman spectroscopy and chemometrics. Appl Spectrosc 53:1419–1428

    CAS  Article  Google Scholar 

  • Solovchenko A, Aflalo C, Lukyanov A, Boussiba S (2013) Nondestructive monitoring of carotenogenesis in Haematococcus pluvialis via whole-cell optical density spectra. Appl Microbiol Biotechnol 97:4533–4541

  • Tartakovsky B, Sheintuch M, Hilmer JM, Scheper T (1996) Application of scanning fluorometry for monitoring of a fermentation process. Biotechnol Prog 12:126–131

    CAS  Article  Google Scholar 

  • Ulber R, Frerichs JG, Beutel S (2003) Optical sensor systems for bioprocess monitoring. Anal Bioanal Chem 376:342–348

    CAS  Article  Google Scholar 

  • Zhang Y, Liu Z, Sun J, Xue C, Mao X (2018) Biotechnological production of zeaxanthin by microorganisms. Trends Food Sci Technol 71:225–234

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Associate Laboratory for Green Chemistry-LAQV, which is financed by national funds from FCT/MCTES (UID/QUI/50006/2019), by the European KBBE FP7 project “D-Factory,” under the topic “The CO2 Microalgae Biorefinery,” and by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No. OSR-2016-CPF-2907-05. FCT/MCTES is also acknowledged for the Post-Doctoral Fellows grants SFRH/BPD/95864/2013 and SFRH/BPD/79533/2011, and PhD Fellow grant SFRH/BD/108894/2015. The authors would like to thank the company A4F-Algae for future (Portugal), who performed all the pilot scale cultivation trials and provided the microalgae used in this work, The Marine Biological Association (Devon, UK), and NBT Ltd. (Israel).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia F. Galinha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sá, M., Ramos, A., Monte, J. et al. Development of a monitoring tool based on fluorescence and climatic data for pigments profile estimation in Dunaliella salina. J Appl Phycol 32, 363–373 (2020). https://doi.org/10.1007/s10811-019-01999-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-019-01999-z

Keywords

  • 2D fluorescence spectroscopy
  • EEMs (excitation-emission matrices)
  • PLS modeling
  • Dunaliella salina
  • Carotenogenesis