Skip to main content
Log in

Macroalgae-enriched diet protects gilthead seabream (Sparus aurata) against erythrocyte population instability and chromosomal damage induced by aqua-medicines

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The incorporation of macroalgae on aquafeeds has been suggested to increase fish growth and organoleptic characteristics. Moreover, the potential of macroalgae to strengthen fish capacity to cope with different stressors is a challenging topic in the field of applied phycology. The adverse side effects of aqua-medicines, combined with the hypothesis that a macroalgae-enriched diet can minimize that impact, are the starting point for the present study. Hence, a mix of Ulva rigida, Fucus vesiculosus and Gracilaria gracilis was incorporated (5%) in the gilthead seabream (Sparus aurata) diet, to evaluate a possible protection against the chromosomal damage (measured as erythrocytic nuclear abnormalities) induced by the antibiotic oxytetracycline and the antiparasitic formalin as well as by the model genotoxicant cyclophosphamide. A 60-day differential dietary background was implemented (one fish group fed with standard diet and other with macroalgae-supplemented diet), after which fish were challenged by oxytetracycline, formalin and cyclophosphamide, and appraisals carried out 4 and 18 days later. To shed light on the modulation of the erythrocytic population dynamics, the erythrocyte maturity index was assessed. Oxytetracycline and formalin displayed a chromosome-damaging potential that remained for 18 days. The macroalgae-enriched diet evidenced a solid genoprotection against the three agents, revealing a broad-spectrum action. Oxytetracycline and formalin induced an erythrocyte population instability (translated into an aging effect), counteracted by algae supplementation, which seems to convey erythropoiesis promoting factors. Overall, the benefits given by the algae supplementation recommend its adoption within a framework of sustainable aquaculture practices, namely as a prophylactic measure to mitigate productivity losses when oxytetracycline and formalin are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • AADAPP (2010) A quick reference guide to approved drugs for use in aquaculture. https://www.fws.gov/fisheries/aadap/PDF/approveddrugs.pdf (Accessed at 17/09/2019)

  • Ambili TR, Saravanan M, Ramesh M, Abhijith DB, Poopal RK (2013) Toxicological effects of the antibiotic oxytetracycline to an Indian major carp Labeo rohita. Arch Environ Contam Toxicol 64:494–503

    Article  CAS  PubMed  Google Scholar 

  • Araújo M, Rema P, Sousa-Pinto I, Cunha LM, Peixoto MJ, Pires MA, Seixas F, Brotas V, Beltrán C, Valente LMP (2016) Dietary inclusion of IMTA-cultivated Gracilaria vermiculophylla in rainbow trout (Oncorhynchus mykiss) diets: effects on growth, intestinal morphology, tissue pigmentation, and immunological response. J Appl Phycol 28:679–689

    Article  CAS  Google Scholar 

  • Athukorala Y, Kim K-N, Jeon Y-J (2006) Antiproliferative and antioxidant properties of an enzymatic hydrolysate from brown alga, Ecklonia cava. Food Chem Toxicol 44:1065–1074

    Article  CAS  PubMed  Google Scholar 

  • Ayllón F, Garcia-Vazquez E (2001) Micronuclei and other nuclear lesions as genotoxicity indicators in rainbow trout Oncorhynchus mykiss. Ecotoxicol Environ Saf 49:221–225

    Article  PubMed  CAS  Google Scholar 

  • Barker S, Weinfeld M, Murray D (2005) DNA–protein crosslinks: their induction, repair, and biological consequences. Mutat Res Mutat Res 589:111–135

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya S (2011) Natural antimutagens: a review. Res J Med Plants 5:116–126

    Article  CAS  Google Scholar 

  • Botelho RG, Christofoletti CA, Correia JE, Ansoar Y, Olinda RA, Tornisielo VL (2015) Genotoxic responses of juvenile tilapia (Oreochromis niloticus) exposed to florfenicol and oxytetracycline. Chemosphere 132:206–212

    Article  CAS  PubMed  Google Scholar 

  • Braham RP, Blazer VS, Shaw CH, Mazik PM (2017) Micronuclei and other erythrocyte nuclear abnormalities in fishes from the Great Lakes Basin, USA. Environ Mol Mutagen 58:570–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrasco K, Tilbury K, Myers M (1990) Assessment of the piscine micronuclei test as an in situ biological indicator of chemical contaminant effects. Can J Fish Aquat Sci 47:2123–2136

    Article  CAS  Google Scholar 

  • Castro D, Mieiro CL, Coelho JP, Guilherme S, Marques A, Santos MA, Duarte AC, Pereira E, Pacheco M (2018) Addressing the impact of mercury estuarine contamination in the European eel (Anguilla anguilla L., 1758) – An early diagnosis in glass eel stage based on erythrocytic nuclear morphology. Mar Pollut Bull 127:733–742

    Article  CAS  PubMed  Google Scholar 

  • Cavas T, Garanko NN, Arkhipchuk VV (2005) Induction of micronuclei and binuclei in blood, gill and liver cells of fishes subchronically exposed to cadmium chloride and copper sulphate. Food Chem Toxicol 43:569–574

    Article  CAS  PubMed  Google Scholar 

  • Celikler S, Tas S, Vatan O, Ziyanok-Ayvalik S, Yildiz G, Bilaloglu R (2009a) Anti-hyperglycemic and antigenotoxic potential of Ulva rigida ethanolic extract in the experimental diabetes mellitus. Food Chem Toxicol 47:1837–1840

    Article  CAS  PubMed  Google Scholar 

  • Celikler S, Tas S, Ziyanok-Ayvalik S, Vatan O, Yildiz G, Ozel M (2014) Protective and antigenotoxic effect of Ulva rigida C. Agardh in experimental hypothyroid. Acta Biol Hung 65:13–26

    Article  CAS  PubMed  Google Scholar 

  • Celikler S, Vatan O, Yildiz G, Bilaloglu R (2009b) Evaluation of anti-oxidative, genotoxic and antigenotoxic potency of Codium tomentosum Stackhouse ethanolic extract in human lymphocytes in vitro. Food Chem Toxicol 47:796–801

    Article  CAS  PubMed  Google Scholar 

  • Costa S, Coelho P, Costa C, Silva S, Mayan O, Santos LS, Gaspar J, Teixeira JP (2008) Genotoxic damage in pathology anatomy laboratory workers exposed to formaldehyde. Toxicology 252:40–48

    Article  CAS  PubMed  Google Scholar 

  • Craft TR, Bermudez E, Skopek TR (1987) Formaldehyde mutagenesis and formation of DNA-protein crosslinks in human lymphoblasts in vitro. Mutat Res Mol Mech Mutagen 176:147–155

    Article  CAS  Google Scholar 

  • Dantagnan P, Hernández A, Borquez A, Mansilla A (2009) Inclusion of macroalgae meal (Macrocystis pyrifera) as feed ingredient for rainbow trout (Oncorhynchus mykiss): effect on flesh fatty acid composition. Aquac Res 41:87–94

    Article  CAS  Google Scholar 

  • Díaz-Rubio ME, Pérez-Jiménez J, Saura-Calixto F (2009) Dietary fiber and antioxidant capacity in Fucus vesiculosus products. Int J Food Sci Nutr 60:23–34

    Article  PubMed  CAS  Google Scholar 

  • DrugBank (2005) Cyclophosphamide. https://www.drugbank.ca/drugs/DB00531.

  • Ebrahimzadeh MA, Khalili M, Dehpour AA (2018) Antioxidant activity of ethyl acetate and methanolic extracts of two marine algae, Nannochloropsis oculata and Gracilaria gracilis - an in vitro assay. Brazilian J Pharm Sci. https://doi.org/10.1590/s2175-97902018000117280

  • El-Sayed A-KIM, Soltan MA, Radwan HA, Mohamed MG (2013) Effect of oxytetracycline and florfenicol on the cytogenetic picture of Nile tilapia (Oreochromis niloticus) fish. J Appl Biol Sci 7:102–106

    CAS  Google Scholar 

  • Farvin KHS, Jacobsen C (2013) Phenolic compounds and antioxidant activities of selected species of seaweeds from Danish coast. Food Chem 138:1670–1681

    Article  CAS  Google Scholar 

  • Fenech M (2000) The in vitro micronucleus technique. Mutat Res 455:81–95

    Article  CAS  PubMed  Google Scholar 

  • Fleurence J, Morançais M, Dumay J, Decottignies P, Turpin V, Munier M, Garcia-Bueno N, Jaouen P (2012) What are the prospects for using seaweed in human nutrition and for marine animals raised through aquaculture? Trends Food Sci Technol 27:57–61

    Article  CAS  Google Scholar 

  • Francavilla M, Franchi M, Monteleone M, Caroppo C (2013) The red seaweed Gracilaria gracilis as a multi products source. Mar Drugs 11:3754–3776

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gamal-Eldeen AM, Abo-Zeid MAM, Ahmed EF (2013) Anti-genotoxic effect of the Sargassum dentifolium extracts: prevention of chromosomal aberrations, micronuclei, and DNA fragmentation. Exp Toxicol Pathol 65:27–34

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Vaquero M, Hayes M (2016) Red and green macroalgae for fish and animal feed and human functional food development. Food Rev Int 32:15–45

    Article  CAS  Google Scholar 

  • Gomes JMM, Ribeiro HJ, Procópio MS, Alvarenga BM, Castro AC, Dutra WO, da Silva JB, Corrêa Junior JD (2015) What the erythrocytic nuclear alteration frequencies could tell us about genotoxicity and macrophage iron storage? PLoS One 10:1–22

    Google Scholar 

  • Grafstrom RC, Curren RD, Yang LL, Harris CC (1985) Genotoxicity of formaldehyde in cultured human bronchial fibroblasts. Science 228:89–91

    Article  CAS  PubMed  Google Scholar 

  • Grisolia CK (2002) A comparison between mouse and fish micronucleus test using cyclophosphamide, mitomycin C and various pesticides. Mutat Res 518:145–150

    Article  CAS  PubMed  Google Scholar 

  • Guilherme S, Válega M, Pereira ME, Santos MA, Pacheco M (2008) Erythrocytic nuclear abnormalities in wild and caged fish (Liza aurata) along an environmental mercury contamination gradient. Ecotoxicol Environ Saf 70:411–421

    Article  CAS  PubMed  Google Scholar 

  • Heffernan N, Smyth TJ, Soler-Villa A, Fitzgerald RJ, Brunton NP (2015) Phenolic content and antioxidant activity of fractions obtained from selected Irish macroalgae species (Laminaria digitata, Fucus serratus, Gracilaria gracilis and Codium fragile). J Appl Phycol 27:519–530

    Article  CAS  Google Scholar 

  • Henriques MAR (1998) Manual de aquacultura. Programa Operacional do Norte, Porto 207 pp

  • Higashi-Okai K, Otani S, Okai Y (1999) Potent suppressive effect of a Japanese edible seaweed, Enteromorpha prolifera (Sujiao-nori) on initiation and promotion phases of chemically induced mouse skin tumorigenesis. Cancer Lett 140:21–25

    Article  CAS  PubMed  Google Scholar 

  • Holdt SL, Kraan S (2011) Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol 23:543–597

    Article  CAS  Google Scholar 

  • IARC (2006) Formaldehyde, 2-butoxyethanol and 1-tert-butoxypropan-2-ol. IARC Monogr Eval Carcinog Risks Hum 88 478 pp

  • Izquierdo-Vega J, Morales-González J, Sánchez-Gutiérrez M, Betanzos-Cabrera G, Sosa-Delgado SM, Sumaya-Martínez MT, Morales-González A, Paniagua-Pérez R, Madrigal-Bujaidar E, Madrigal-Santillán E (2017) Evidence of some natural products with antigenotoxic effects. Part 1: fruits and polysaccharides. Nutrients 9:102

    Article  PubMed Central  CAS  Google Scholar 

  • Jerbi MA, Ouanes Z, Besbes R, Achour L, Kacem A (2011) Single and combined genotoxic and cytotoxic effects of two xenobiotics widely used in intensive aquaculture. Mutat Res Toxicol Environ Mutagen 724:22–27

    Article  CAS  Google Scholar 

  • Jung SH, Kim JW, Jeon IG, Lee YH (2001) Formaldehyde residues in formalin-treated olive flounder (Paralichthys olivaceus), black rockfish (Sebastes schlegeli), and seawater. Aquaculture 194:253–262

    Article  CAS  Google Scholar 

  • Jung SH, Sim DS, Park M-S, Jo Q, Kim Y (2003) Effects of formalin on haematological and blood chemistry in olive flounder, Paralichthys olivaceus (Temminck et Schlegel). Aquac Res 34:1269–1275

    Article  CAS  Google Scholar 

  • Khan MA, Musarrat J (2003) Interactions of tetracycline and its derivatives with DNA in vitro in presence of metal ions. Int J Biol Macromol 33:49–56

    Article  CAS  PubMed  Google Scholar 

  • Khan MA, Mustafa J, Musarrat J (2003) Mechanism of DNA strand breakage induced by photosensitized tetracycline–Cu(II) complex. Mutat Res Mol Mech Mutagen 525:109–119

    Article  CAS  Google Scholar 

  • Kiernan JA (2000) Formaldehyde, formalin, paraformaldehyde and glutaraldehyde: what they are and what they do. Micros Today 8:8–13

    Article  Google Scholar 

  • Koury MJ, Ponka P (2004) New insights into erythropoiesis: the roles of folate, vitamin B12, and iron. Annu Rev Nutr 24:105–131

    Article  CAS  PubMed  Google Scholar 

  • Kreutzmann H-L (1977) The effects of chloramphenicol and oxytetracycline on haematopoiesis in the European eel (Anguilla anguilla). Aquaculture 10:323–334

    Article  CAS  Google Scholar 

  • Lahaye M, Robic A (2007) Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules 8:1765–1774

    Article  CAS  PubMed  Google Scholar 

  • Leal JF, Neves MGPMS, Santos EBH, Esteves VI (2018) Use of formalin in intensive aquaculture: properties, application and effects on fish and water quality. Rev Aquac 10:281–295

    Article  Google Scholar 

  • Ma T-H, Harris MM (1988) Review of the genotoxicity of formaldehyde. Mutat Res Genet Toxicol 196:37–59

    Article  CAS  Google Scholar 

  • Maceda-Veiga A, Figuerola J, Martínez-Silvestre A, Viscor G, Ferrari N, Pacheco M (2015) Inside the Redbox: applications of haematology in wildlife monitoring and ecosystem health assessment. Sci Total Environ 514:322–332

    Article  CAS  PubMed  Google Scholar 

  • Maceda-Veiga A, Monroy M, Viscor G, De Sostoa A (2010) Changes in non-specific biomarkers in the Mediterranean barbel (Barbus meridionalis) exposed to sewage effluents in a Mediterranean stream (Catalonia, NE Spain). Aquat Toxicol 100:229–237

    Article  CAS  PubMed  Google Scholar 

  • Marques A, Ferreira J, Abreu H, Pereira R, Rego A, Serôdio J, Christa G, Gaivão I, Pacheco M (2018) Searching for antigenotoxic properties of marine macroalgae dietary supplementation against endogenous and exogenous challenges. J Toxicol Environ Health A:1–18. https://doi.org/10.1080/15287394.2018.1507856

  • Mert R, Karasu Benli AÇ, Arslan G (2015) Determination of histological and genotoxic effects of formalin on Nile tilapia (Oreochromis niloticus L.). Aquac Res 46:2798–2807

    Article  CAS  Google Scholar 

  • Mezghani S, Csupor D, Bourguiba I, Hohmann J, Amri M, Bouaziz M (2016) Characterization of phenolic compounds of Ulva rigida (Chlorophycae) and its antioxidant activity. Eur J Med Plants 12:1–9

    Article  Google Scholar 

  • Mohamed S, Hashim SN, Rahman HA (2012) Seaweeds: a sustainable functional food for complementary and alternative therapy. Trends Food Sci Technol 23:83–96

    Article  CAS  Google Scholar 

  • Morel J-M, Perrey F, Lejeune R, Goetz P (2005) Fucus vesiculosus L. Phytothérapie 3:218–221

    Article  Google Scholar 

  • Nagarani N, JanakiDevi V, YokeshBabu M, Kumaraguru AK (2012) Protective effect of Kappaphycus alvarezii (Rhodophyta) extract against DNA damage induced by mercury chloride in marine fish. Toxicol Environ Chem 94:1401–1410

    Article  CAS  Google Scholar 

  • Okai Y, Higashi-Okai K (1994) Identification of antimutagenic activities in the extract of an edible brown alga, Hijikia fusiforme (Hijiki) by umu gene expression system in Salmonella typhimurium (TA 1535/pSK 1002). J Sci Food Agric 66:103–109

    Article  CAS  Google Scholar 

  • Olson MH, Mitchell DL (2006) lnterspecific variation in UV defense mechanisms among temperate freshwater fishes. Photochem Photobiol 82:606–610

    Article  CAS  PubMed  Google Scholar 

  • Omoregie E, Oyebanji SM (2002) Oxytetracycline-induced blood disorder in juvenile Nile tilapia Oreochromis niloticus (Trewavas). J World Aquacult Soc 33:377–382

    Article  Google Scholar 

  • Pacheco M, Santos MA (1998) Induction of liver EROD and erythrocytic nuclear abnormalities by cyclophosphamide and PAHs in Anguilla anguilla L. Ecotoxicol Environ Saf 40:71–76

    Article  CAS  PubMed  Google Scholar 

  • Pacheco M, Santos MA (2002) Biotransformation, genotoxic, and histopathological effects of environmental contaminants in European eel (Anguilla anguilla L.). Ecotoxicol Environ Saf 53:331–347

    Article  CAS  PubMed  Google Scholar 

  • Pacheco M, Santos MA (1997) Induction of EROD activity and genotoxic effects by polycyclic aromatic hydrocarbons and resin acids on the juvenile eel (Anguilla anguilla L.). Ecotoxicol Environ Saf 38:252–259

    Article  CAS  PubMed  Google Scholar 

  • Pacheco M, Santos MA (1996) Induction of micronuclei and nuclear abnormalities in the erythrocytes of Anguilla anguilla L. exposed either to cyclophosphamide or to bleached kraft pulp mill effluent. Fresenius Environ Bull 5:746–751

    CAS  Google Scholar 

  • Pedersen L-F, Pedersen PB, Nielsen JL, Nielsen PH (2010) Long term/low dose formalin exposure to small-scale recirculation aquaculture systems. Aquac Eng 42:1–7

    Article  Google Scholar 

  • Peixoto MJ, Salas-Leitón E, Pereira LF, Queiroz A, Magalhães F, Pereira R, Abreu H, Reis PA, Gonçalves JFM, Ozório ROA (2016) Role of dietary seaweed supplementation on growth performance, digestive capacity and immune and stress responsiveness in European seabass (Dicentrarchus labrax). Aquac Reports 3:189–197

    Article  Google Scholar 

  • Pereira V, Marques A, Gaivão I, Rego A, Abreu H, Pereira R, Santos MA, Guilherme S, Pacheco M (2019) Marine macroalgae as a dietary source of genoprotection in gilthead seabream (Sparus aurata) against endogenous and exogenous challenges. Comp Biochem Physiol C. https://doi.org/10.1016/j.cbpc.2019.01.006

  • Pereira VSAS (2016) Protective effects of seaweed feed supplementation towards genetic integrity in gilthead seabream (Sparus aurata). Master thesis, http://hdl.handle.net/10773/22364

  • Queiroz AC, Pereira R, Domingues AF, Peixoto MJD, Gonçalves JFM, Ozorio ROA (2014) Effect of seaweed supplementation on growth performance, immune and oxidative stress responses in gilthead seabream (Sparus aurata). Front Mar Sci Conf Abstr Int Meet Mar Res

  • Rasyid A, Ardiansyah A, Pangestuti R (2019) Nutrient composition of dried seaweed Gracilaria gracilis. Indones J Mar Sci 24:1–6

    Article  Google Scholar 

  • Rigos G, Nengas I, Alexis M (2006) Oxytetracycline (OTC) uptake following bath treatment in gilthead sea bream (Sparus aurata). Aquaculture 261:1151–1155

    Article  CAS  Google Scholar 

  • Rigos G, Nengas I, Tyrpenou AE, Alexis M, Troisi GM (2003) Pharmacokinetics and bioavailability of oxytetracycline in gilthead sea bream (Sparus aurata) after a single dose. Aquaculture 221:75–83

    Article  CAS  Google Scholar 

  • Rodrigues S, Antunes SC, Correia AT, Nunes B (2017) Rainbow trout (Oncorhynchus mykiss) pro-oxidant and genotoxic responses following acute and chronic exposure to the antibiotic oxytetracycline. Ecotoxicology 26:104–117

    Article  CAS  PubMed  Google Scholar 

  • Romero J, Feijoó CG, Navarrete P (2012) Antibiotics in aquaculture – use, abuse and alternatives. In: Carvalho E (ed) Health and environment in aquaculture. InTech, Riejeka pp 159–198

  • Rupérez P, Ahrazem O, Leal JA (2002) Potential antioxidant capacity of sulfated polysaccharides from the edible marine brown seaweed Fucus vesiculosus. J Agric Food Chem 50:840–845

    Article  PubMed  CAS  Google Scholar 

  • Savage JRK (1993) Update on target theory as applied to chromosomal aberrations. Environ Mol Mutagen 22:198–207

    Article  CAS  PubMed  Google Scholar 

  • Schlenk D, Benson WH (2001) Target organ toxicity in marine and freshwater teleosts: organs. Taylor & Francis, London

    Book  Google Scholar 

  • Sharker MR, Sumi KR, Alam MJ, Rahman MM, Ferdous Z, Ali MM, Chaklader MR (2014) Drugs and chemicals used in aquaculture activities for fish health management in the coastal region of Bangladesh. Int J Life Sci Biotechnol Pharma Res 3:49

    CAS  Google Scholar 

  • Silva J, Laranjeira A, Serradeiro R, Santos MA, Pacheco M (2011) Ozonated seawater induces genotoxicity and hematological alterations in turbot (Scophthalmus maximus) — Implications for management of recirculation aquaculture systems. Aquaculture 318:180–184

    Article  CAS  Google Scholar 

  • Smith CE, Piper RG (1972) Pathological effects in formalin-treated rainbow trout (Salmo gairdneri). J Fish Res Bd Canada 29:328–329

    Article  Google Scholar 

  • Stoiber T, Bonacker D, Böhm K, Bolt HM, Thier R, Degen GH, Unger E (2004) Disturbed microtubule function and induction of micronuclei by chelate complexes of mercury (II). Mutat Res 563:97–106

    Article  CAS  PubMed  Google Scholar 

  • Stuart KR, Keller M, Drawbridge M (2010) Efficacy of formalin and povidone–iodine disinfection techniques on the eggs of three marine finfish species. Aquac Res 41:e838–e843

    Article  CAS  Google Scholar 

  • Swenberg JA, Moeller BC, Lu K, Rager JE, Fry RC, Starr TB (2012) Formaldehyde carcinogenicity research: 30 years and counting for mode of action, epidemiology, and cancer risk assessment. Toxicol Pathol 41:181–189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taboada C, Millán R, Míguez I (2010) Composition, nutritional aspects and effect on serum parameters of marine algae Ulva rigida. J Sci Food Agric 90:445–449

    Article  CAS  PubMed  Google Scholar 

  • Valente LMP, Araújo M, Batista S, Peixoto MJ, Sousa-Pinto I, Brotas V, Cunha LM, Rema P (2016) Carotenoid deposition, flesh quality and immunological response of Nile tilapia fed increasing levels of IMTA-cultivated Ulva spp. J Appl Phycol 28:691–701

    Article  CAS  Google Scholar 

  • Valente LMP, Rema P, Ferraro V, Pintado M, Sousa-Pinto I, Cunha LM, Oliveira MB, Araújo M (2015) Iodine enrichment of rainbow trout flesh by dietary supplementation with the red seaweed Gracilaria vermiculophylla. Aquaculture 446:132–139

    Article  CAS  Google Scholar 

  • Wassef EA, El-Sayed AFM, Kandeel KM, Sakr EM (2005) Evaluation of Pterocladia (Rhodophyta) and Ulva (Chlorophyta) meals as additives to gilthead seabream Sparus aurata diets. Egypt J Aquat Res 31:321–332

    Google Scholar 

  • Winter MJ, Ellis LCJ, Hutchinson TH (2007) Formation of micronuclei in erythrocytes of the fathead minnow (Pimephales promelas) after acute treatment with mitomycin C or cyclophosphamide. Mutat Res Toxicol Environ Mutagen 629:89–99

    Article  CAS  Google Scholar 

  • Wooster GA, Martinez CM, Bowser PR, O’Hara DS (2011) Human health risks associated with formalin treatments used in aquaculture: initial study. N Am J Aquac 67:111–113

    Article  Google Scholar 

  • Xie D, Li X, You C, Wang S, Li Y (2019) Supplementation of macroalgae together with non-starch polysaccharide-degrading enzymes in diets enhanced growth performance, innate immune indexes, and disease resistance against Vibrio parahaemolyticus in rabbitfish Siganus canaliculatus. J Appl Phycol 31:2073–2083

    Article  CAS  Google Scholar 

  • Yang JI, Yeh CC, Lee JC, Yi SC, Huang HW, Tseng CN, Chang HW (2012) Aqueous extracts of the edible Gracilaria tenuistipitata are protective against H2O2-induced DNA damage, growth inhibition, and cell cycle arrest. Molecules. https://doi.org/10.3390/molecules17067241

  • Yildiz G, Celikler S, Vatan O, Dere Ş (2012) Determination of the anti-oxidative capacity and bioactive compounds in green seaweed Ulva rigida C. Agardh. Int J Food Prop 15:1182–1189

    Article  CAS  Google Scholar 

  • Yildiz G, Dere E, Dere Ş (2014) Comparison of the antioxidative components of some marine macroalgae from Turkey. Pak J Bot 46:753–757

    Google Scholar 

  • Yuan Y, Walsh N (2006) Antioxidant and antiproliferative activities of extracts from a variety of edible seaweeds. Food Chem Toxicol 44:1144–1150

    Article  CAS  PubMed  Google Scholar 

  • Zar J (1996) Biostatistical analysis. Prentice Hall, New Jersey

    Google Scholar 

  • Zinadah OA, Khalil WK, Ashmaoui HM, Abdu F, Alsoud MA (2013) Evaluation of the anti-genotoxicity and growth performance impacts of green algae on Mugil cephalus. Life Sci J 10:1543–1554

    Google Scholar 

  • Zounková R, Klimešová Z, Nepejchalová L, Hilscherová K, Bláha L (2011) Complex evaluation of ecotoxicity and genotoxicity of antimicrobials oxytetracycline and flumequine used in aquaculture. Environ Toxicol Chem 30:1184–1189

    Article  PubMed  CAS  Google Scholar 

  • Zubia M, Fabre MS, Kerjean V, Lann KL, Stiger-Pouvreau V, Fauchon M, Deslandes E (2009) Antioxidant and antitumoural activities of some Phaeophyta from Brittany coasts. Food Chem 116:693–701

    Article  CAS  Google Scholar 

Download references

Funding

Thanks are due for the financial support to CESAM (UID/AMB/50017 - POCI-01-0145-FEDER-007638), to FCT/MCTES through national funds (PIDDAC) and the co-funding by the FEDER, within the PT2020 Partnership Agreement and Compete 2020 and to FCT/MCTES through the Ph.D. fellowship (SFRH/BD/102671/2014). This work was also funded by the project UID/CVT/00772/2019 supported by FCT/MCTES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Marques.

Ethics declarations

Conflict of interests

The authors declare that they have no conflicts of interest.

Ethics approval

This study was conducted in accordance with the EU Directive 2010/63/EU on the protection of animals used for scientific purposes, under the supervision of a certified operator authorized by the Portuguese Veterinary Directorate (approval no. 0421/000/000).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 450 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marques, A., Marçal, R., Pereira, V. et al. Macroalgae-enriched diet protects gilthead seabream (Sparus aurata) against erythrocyte population instability and chromosomal damage induced by aqua-medicines. J Appl Phycol 32, 1477–1493 (2020). https://doi.org/10.1007/s10811-019-01996-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-019-01996-2

Keywords

Navigation