Skip to main content
Log in

Effect of nutrient concentration on growth and saxitoxin production of Raphidiopsis raciborskii (Cyanophyta) interacting with Monoraphidium contortum (Chlorophyceae)

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Raphidiopsis raciborskii is the dominant species in several subtropical aquatic ecosystems. This study addressed the influence of nutrient concentration on cyanobacteria growth and saxitoxin synthesis. Therefore, we performed bioassays of interaction between the Chlorophyceae Monoraphidium contortum and R. raciborskii simulating oligotrophic and supereutrophic environments. Experiments were carried out in a climatized room for 15 days in pure cultures of each species (control) and mixed (interaction). The biomass growth (biovolume) and specific growth rates were measured. Saxitoxin was analyzed using the ELISA biochemical method. In the oligotrophic environment, the cell volume of R. raciborskii decreased. This species also showed senescence in interaction with M. contortum. However, there were no statistical differences in the saxitoxin synthesis in both conditions. In the supereutrophic environment, the growth of R. raciborskii and saxitoxin production was similar in both the control and interaction conditions. However, M. contortum growth decreased in interaction with the cyanobacteria. The increase in trophic status from oligo- to supereutrophic contributes to the growth of M. contortum in subtropical aquatic ecosystems, but the decrease in the area/volume ratio of cyanobacteria and the saxitoxin synthesis is an evident survival strategy in oligotrophic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aguilera A, Gomez EB, Kastovsky J, Echenique RO, Salerno GL (2018) The polyphasic analysis of two native Raphidiopsis isolates supports the unification of the genera Raphidiopsis and Cylindrospermopsis (Nostocales, Cyanobacteria). Phycologia 57:130–146

    Article  CAS  Google Scholar 

  • Amaral V, Bonilla S, Aubriot L (2014) Growth optimization of the invasive cyanobacterium Cylindrospermopsis raciborskii in response to phosphate fluctuations. Eur J Phycol 49:134–141

    Article  CAS  Google Scholar 

  • American Public Health Association (APHA) (2005) Standard methods for the examination of water and wastewater, 19th edn. Byrd Prepess Spingfield, Washington

    Google Scholar 

  • Andersen RA, Kawachi M (2005) Traditional microalgae isolation techniques. In: Andersen RA (ed) Algal Culturing Techniques. Elsevier Academic Press, San Diego, pp 83–100

    Google Scholar 

  • Antunes JT, Leão PN, Vasconcelos VM (2015) Cylindrospermopsis raciborskii: review of the distribution, phylogeography, and ecophysiology of a global invasive species. Front Microbiol 6:1–13

    Article  Google Scholar 

  • Beghelli FGS, Frascareli D, Pompêo MLM, Moschini-Carlos V (2016) Trophic state evolution over 15 years in a tropical reservoir with low nitrogen concentrations and cyanobacteria predominance. Water Air Soil Pollut 227:95

    Article  CAS  Google Scholar 

  • Berry JP, Lind O (2010) First evidence of “paralytic shellfish toxins” and cylindrospermopsin in a Mexican freshwater system, Lago Catemaco, and apparent bioaccumulation of the toxins in “tegogolo” snails (Pomacea patula catemacensis). Toxicon 55:930–938

    Article  CAS  PubMed  Google Scholar 

  • Bestion E, García-Carreras B, Schaum CE, Pawar S, Yvon-Dorucher G (2018) Metabolic traits predict the effects of warming in phytoplankton competition. Ecol Lett 21:655–664

    Article  PubMed  PubMed Central  Google Scholar 

  • Bittencourt-Oliveira MC, Piccin-Santos V, Moura AN, Aragão-Tavares NKC, Cordeiro-Araújo MK (2014) Cyanobacteria, microcystins and cylindrospermopsin in public drinking supply reservoirs of Brazil. Ann Acad Brasil Ciênc 86:297–309

    Article  Google Scholar 

  • Bonilla S, Aubriot L, Soares MCS, González-Piana M, Fabre A, Huszar VLM, Lürling M, Antoniades D, Padisák J, Kruk C (2012) What drives the distribution of the bloom-forming cyanobacteria Planktothrix agardhii and Cylindrospermopsis raciborskii? FEMS Microbiol Ecol 79:594–607

    Article  CAS  PubMed  Google Scholar 

  • Bouvy M, Falcão D, Marinho M, Pagano M, Moura A (2000) Occurrence of Cylindrospermopsis (Cyanobacteria) in 39 Brazilian tropical reservoirs during the 1998 drought. Aquat Microb Ecol 23:13–27

    Article  Google Scholar 

  • Briand JF, Robillot C, Quiblier-Llobéras C, Humbert JF, Couté A, Bernard C (2002) Environmental context of Cylindrospermopsis raciborskii (Cyanobacteria) blooms in a shallow pond in France. Water Res 36:3183–3192

    Article  CAS  PubMed  Google Scholar 

  • Burford MA, Johnson SA, Cook AJ, Packer TV, Taylor BM, Townsley ER (2007) Correlations between watershed and reservoir characteristics and algal blooms in subtropical reservoirs. Water Res 41:4105–4114

    Article  CAS  PubMed  Google Scholar 

  • Burford MA, Davis TW, Orr PT, Sinha R, Willis A, Neilan BA (2014) Nutrient-related changes in the toxicity of field blooms of the cyanobacterium, Cylindrospermopsis raciborskii. FEMS Microbiol Ecol 89:135–148

    Article  CAS  PubMed  Google Scholar 

  • Burford MA, Beardall J, Willis A, Orr PT, Magalhaes VF, Rangel LM, Azevedo SMFOE, Neilan BA (2016) Understanding the winning strategies used by the bloom-forming cyanobacterium Cylindrospermopsis raciborskii. Harmful Algae 54:44–53

    Article  PubMed  Google Scholar 

  • Callegari-Jacques SM (2003) Bioestatística – Princípios e Aplicações, 1st edn. Artmed, Porto Alegre

    Google Scholar 

  • Carlson RE (1977) A trophic state index for lakes. Limnol Oceanogr 22:361–380

    Article  CAS  Google Scholar 

  • Carmichael WW (1994) An overview of toxic cyanobacterial research in the United States. In: Proc. Of Toxic Cyanobacteria – A Global Perspective. Adelaide, South Australia Centre for Water Quality Research

  • Casali SP, Dos Santos ACA, Falco PB, Calijuri MC (2017) Influence of environmental variables on saxitoxin yields by Cylindrospermopsis raciborskii in a mesotrophic subtropical reservoir. J Water Health 15:509–518

    Article  PubMed  Google Scholar 

  • Chellappa NT, Borba JM, Rocha O (2008) Phytoplankton community and physical-chemical characteristics of water in the public reservoir of Cruzeta, RN, Brazil. Braz J Biol 68:477–494

    Article  CAS  PubMed  Google Scholar 

  • Cirés S, Ballot A (2016) A review of the phylogeny, ecology and toxin production of bloom-forming Aphanizomenon spp. and related species within the Nostocales (cyanobacteria). Harmful Algae 54:21–43

    Article  CAS  PubMed  Google Scholar 

  • Cunha DGF, Bottino F, Calijuri MC (2012) Can free-floating and emerged macrophytes influence the density and diversity of phytoplankton in subtropical reservoirs? Lake Reserv Manag 28:255–264

    Article  CAS  Google Scholar 

  • Cunha DGF, Calijuri MC, Lamparelli MC (2013) A trophic state index for tropical/subtropical reservoirs (TSItsr). Ecol Eng 60:126–134

    Article  Google Scholar 

  • Dodds WK, Bouska WW, Eitzmann JL, Pilger TJ, Pitts KL, Riley AJ, Schloesser JT, Thornbrugh DJ (2009) Eutrophication of U.S. freshwaters: analysis of potential economic damages. Environ Sci Technol 43:12–19

    Article  CAS  PubMed  Google Scholar 

  • Glober CJ, Burkholder JM, Davis TW, Harke MJ, Johengen T, Stow CA, Van de Waal DB (2016) The dual role of nitrogen supply in controlling the growth and toxicity of cyanobacterial blooms. Harmful Algae 54:87–97

    Article  CAS  Google Scholar 

  • Gorham PR, McLachlan J, Hammer UT (1964) Isolation and culture of toxic strains of Anabaena flos-aquae (Lyngb.) de Bréb. Verh Internat Verein Limnol 15:796–804

    Google Scholar 

  • Harke MJ, Steffen MM, Glober CJ, Otten TG, Wilhelm SW, Wood SA, Paerl HW (2016) A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae 54:04–20

    Article  Google Scholar 

  • Hillebrand H, Dürselen CD, Kirschtel D (1999) Biovolume calculations for pelagic and benthic microalgae. J Phycol 35:403–424

    Article  Google Scholar 

  • Holland A, Kinnear S (2013) Interpreting the possible ecological role(s) of cyanotoxins: compounds for competitive advantage and/or physiological aide? Mar Drugs 11:2239–2258

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoshaw RW, Rosowski JR (1973) Isolation and purification – methods for microscopic algae. In: Stein JR (ed) Handbook of phycological methods: culture methods and growth measurements. Cambridge University, Cambridge, pp 53–67

    Google Scholar 

  • Hyenstrand P, Burkert U, Pettersson A, Blomqvist P (2000) Competition between the green alga Scenedesmus and the cyanobacterium Synechococcus under different modes of inorganic nitrogen supply. Hydrobiologia 435:91–98

    Article  Google Scholar 

  • INMET - Brazilian Institute of Meteorology. 2009. Data on climatic variables: air temperature, rainfall and Wind. [cited 7 Dec 2018]. Available from http://www.inmet.gov.br

  • INMET - Brazilian Institute of Meteorology. 2010. Data on climatic variables: air temperature, rainfall and wind. [cited 7 Dec 2018]. Available from: http://www.inmet.gov.br

  • Kearns KD, Hunter MD (2000) Green algal extracellular products regulate antialgal toxin production in a cyanobacterium. Environ Microbiol 2:291–297

    Article  CAS  PubMed  Google Scholar 

  • Kim HS, Hwang SJ, Shin JK, An KG, Yoon CG (2007) Effects of limiting nutrients and N:P ratios on the phytoplankton growth in a shallow hypertrophic reservoir. Hydrobiologia 581:255–267

    Article  CAS  Google Scholar 

  • Lamparelli MC (2004) Grau de trofia em corpos d’água do estado de São Paulo: Avaliação dos métodos de monitoramento. Dissertation, Instituto de Biociências da Universidade de São Paulo

  • Lee GF, Jones-Lee A (1998) Determination of nutrient limiting maximum algal biomass in waterbodies. Report of G. Fred Lee & Associates, El Macero, CA. http://www.gfredlee.com/Nutrients/nut_limit.pdf Accessed 30 August 2017

  • Nuch EA (1980) Comparison of different methods for chlorophyll and phaeopigment. Arch Hydrobiol Beih Ergebn Limnol 14:14–36

    Google Scholar 

  • O’Neil JM, Davis TW, Burford MA, Gobler CJ (2012) The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14:313–334

    Article  CAS  Google Scholar 

  • Orr PT, Willis A, Burford MA (2018) Application of first order rate kinetics to explain changes in bloom toxicity—the importance of understanding cell toxin quotas. J Oceanol Limnol 36:1063–1074

    Article  CAS  Google Scholar 

  • Padisák J (1997) Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptative cyanobacterium: worldwide distribution and review of its ecology. Arch Hydrobiol 107:563–593

    Google Scholar 

  • Padisák J, Crossetti LO, Naselli-Flores L (2009) Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621:1–19

    Article  Google Scholar 

  • Piccini C, Aubriot L, Fabre A, Amaral V, Piana MG, Giani A, Figueredo CC, Vidal L, Kruk C, Bonilla S (2011) Genetic and eco-physiological differences of South American Cylindrospermopsis raciborskii isolates support the hypothesis of multiple ecotypes. Harmful Algae 10:644–653

    Article  Google Scholar 

  • Reynolds CS (1988) Functional morphology and the adaptive strategies of freshwater phytoplankton. In: Sandgren CD (ed) Growth and reproductive strategies of freshwater phytoplankton. Cambridge University Press, New York, pp 388–433

    Google Scholar 

  • Reynolds CS (2006) The ecology of phytoplankton: ecology, biodiversity, and conservation. Cambridge University Press, New York

    Book  Google Scholar 

  • Rocha O, Duncan A (1985) The relationship between cell carbon and cell volume in freshwater algal species used in zooplanktonic studies. J Plankton Res 7:279–294

    Article  Google Scholar 

  • Rodrigo MA, Rojo C, Segura M, Larrosa J (2009) Mechanisms of microalgae selection during the assembly of a planktonic community. Aquat Ecol 43:61–72

    Article  Google Scholar 

  • Smith VH (1983) Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science 221:669–671

    Article  CAS  PubMed  Google Scholar 

  • Stal LJ, Albertano P, Bergman B, Bröckel K, Gallon JR, Hayes PK, Sivonen K, Walsby AE (2003) BASIC: Baltic Sea cyanobacteria. An investigation of the structure and dynamics of water blooms of cyanobacteria in the Baltic Sea—responses to a changing environment. Cont Shelf Res 23:1695–1714

    Article  Google Scholar 

  • Stein JR (2003) Handbook of phycological methods: culture methods and growth measurements. Cambridge University Press, New York

    Google Scholar 

  • Törökne A, Asztalos M, Bánkiné M, Bickel H, Borbély G, Carmeli S, Codd GA, Fastner J, Huang Q, Humpage A, Metcalf JS, Rábai E, Sukenik A, Surányi G, Vasas G, Weiszfeiler V (2004) Interlaboratory comparison trial on cylindrospermopsin measurement. Anal Biochem 332:280–284

    Article  CAS  PubMed  Google Scholar 

  • Wetzel RG (1993) Limnologia. Editora Fundação Calouste Gulbenkian, Lisboa

    Google Scholar 

  • Wu Z, Shi J, Li R (2009) Comparative studies on photosynthesis and phosphate metabolism of Cylindrospermopsis raciborskii with Microcystis aeruginosa and Aphanizomenon flos-aquae. Harmful Algae 8:910–915

    Article  CAS  Google Scholar 

  • Yilmaz M, Phlips EJ, Szabo NJ, Badylak S (2008) A comparative study of Florida strains of Cylindrospermopsis and Aphanizomenon for cylindrospermopsin production. Toxicon 51:130–139

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Zhang Y, Lin D, Shan K, Luo Y, Zhao L, Tan Z, Song L (2016) The relationships of meteorological factors and nutrient levels with phytoplankton biomass in a shallow eutrophic lake dominated by cyanobacteria, Lake Dianchi from 1991 to 2013. Environ Sci Pollut Res 23:15616–15626

    Article  CAS  Google Scholar 

  • Zhu W, Wan L, Zhao L (2010) Effect of nutrient level on phytoplankton community structure in different water bodies. J Environ Sci 22:32–39

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the thematic project team from Escola de Engenharia de São Carlos da Universidade de São Paulo (EESC-USP), Universidade Federal de São Carlos-Campus Sorocaba (UFSCar Sorocaba), Universidade Federal do ABC (UFABC), and Universidade Paulista Campus Sorocaba (Unesp Sorocaba).

Funding

We would like to thank the Conselho de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (process 2008/55636-9) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Regina Vargas.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vargas, S.R., dos Santos, P.V., Bottino, F. et al. Effect of nutrient concentration on growth and saxitoxin production of Raphidiopsis raciborskii (Cyanophyta) interacting with Monoraphidium contortum (Chlorophyceae). J Appl Phycol 32, 421–430 (2020). https://doi.org/10.1007/s10811-019-01972-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-019-01972-w

Keywords

Navigation