Skip to main content
Log in

Statistical optimization of lipid production by the diatom Gyrosigma sp. grown in industrial wastewater

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The marine diatom Gyrosigma sp. was cultured in a medium comprised of inorganic nutrients dissolved in palm oil mill effluent (POME) wastewater. The production of lipids in the biomass was optimized using a statistical design of experiments in combination with the response surface method. The experimental factors were incident light level and initial concentrations of nitrate, phosphate, and silicate in the medium in batch culture. At 25 ± 2 °C, the maximum lipid content in the biomass harvested at the end of a 12-day batch culture was 70.7 ± 6.0% by dry weight for the following values of the experimental factors: an incident light level of 131 μmol photons m−2 s−1, a nitrate concentration of 1.8 mg L−1 (29.0 μM), a phosphate concentration of 6.8 mg L−1 (71.6 μM), and a silicate concentration of 10.1 mg L−1 (132.7 μM). Under the optimized conditions, the maximum dry mass concentration of the diatom was 560 mg L−1 on day 8 of a batch culture, declining to ~409 mg L−1 on day 12. For the 12-day batch operation, the final average productivities of the biomass and the lipids were 34.1 ± 5.5 mg L−1 day−1 and 24.1 ± 0.2 mg L−1 day−1, respectively. The fatty acids in the algal lipids were found to be as follows (%, w/w of total lipids): palmitic acid (48.6%), eicosapentaenoic acid (10.6%), myristic acid (8.1%), stearic acid (8.0%), linoleic acid (7.5%), oleic acid (6.4%), and linolenic acid (5.8%). The response surface model predicted the lipid content in the biomass with a high degree of confidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Admiraal W (1977) Influence of light and temperature on the growth rate of estuarine benthic diatoms in culture. Mar Biol 39:1–9

    Article  Google Scholar 

  • Banerjee A, Sharma R, Chisti Y, Banerjee UC (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22:245–279

    Article  CAS  PubMed  Google Scholar 

  • Belarbi EH, Molina E, Chisti Y (2000) A process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil. Enzym Microb Technol 26:516–529

    Article  CAS  Google Scholar 

  • Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76:965–977

    Article  CAS  PubMed  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Borowitzka MA, Moheimani NR (eds) (2013) Algae for biofuels and energy. Springer, Dordrecht

    Google Scholar 

  • Bouyam S, Choorit W, Sirisansaneeyakul S, Chisti Y (2017) Heterotrophic production of Chlorella sp. TISTR 8990—biomass growth and composition under various production conditions. Biotechnol Prog 33:1589–1600

    Article  CAS  PubMed  Google Scholar 

  • Brzezinski MA, Villareal TA, Lipschultz F (1998) Silica production and the contribution of diatoms to new and primary production in the central North Pacific. Mar Ecol Prog Ser 167:89–104

    Article  CAS  Google Scholar 

  • Bux F, Chisti Y (eds) (2016) Algae biotechnology: products and processes. Springer, New York

    Google Scholar 

  • Casas López JL, Sánchez Pérez JA, Fernández Sevilla JM, Acién Fernández FG, Molina Grima E, Chisti Y (2004) Fermentation optimization for the production of lovastatin by Aspergillus terreus: use of response surface methodology. J Chem Technol Biotechnol 79:1119–1126

    Article  CAS  Google Scholar 

  • Cerón García MC, García Camacho F, Sánchez Mirón A, Fernández Sevilla JM, Chisti Y, Molina Grima E (2006) Mixotrophic production of marine microalga Phaeodactylum tricornutum on various carbon sources. J Microbiol Biotechnol 16:689–694

    Google Scholar 

  • Chatsungnoen T, Chisti Y (2016a) Oil production by six microalgae: impact of flocculants and drying on oil recovery from the biomass. J Appl Phycol 28:2697–2705

    Article  CAS  Google Scholar 

  • Chatsungnoen T, Chisti Y (2016b) Optimization of oil extraction from Nannochloropsis salina biomass paste. Algal Res 15:100–109

    Article  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2013a) Constraints to commercialization of algal fuels. J Biotechnol 167:201–214

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2013b) Raceways-based production of algal crude oil. Green 3:195–216

    Article  CAS  Google Scholar 

  • Collos Y (1998) Nitrate uptake, nitrite release and uptake, and new production estimates. Mar Ecol Prog Ser 171:293–301

    Article  CAS  Google Scholar 

  • Collyer DM, Fogg GE (1955) Studies on fat accumulation by algae. J Exp Bot 6:256–275

    Article  CAS  Google Scholar 

  • Conley DJ, Kilham SS (1989) Differences in silica content between marine and freshwater diatoms. Limnol Oceanogr 34:205–213

    Article  CAS  Google Scholar 

  • DeNicola DM (2000) A review of diatoms found in highly acidic environments. Hydrobiologia 433:111–122

    Article  Google Scholar 

  • Dyall SC (2015) Long-chain omega-3 fatty acids and the brain: a review of the independent and shared effects of EPA, DPA and DHA. Front Aging Neurosci 7:article 52

    Article  CAS  PubMed  Google Scholar 

  • Eixler S, Karsten U, Selig U (2006) Phosphorus storage in Chlorella vulgaris (Trebouxiophyceae, Chlorophyta) cells and its dependence on phosphate supply. Phycologia 45:53–60

    Article  Google Scholar 

  • Flynn KJ, Martin-Jézéquel V (2000) Modelling Si–N-limited growth of diatoms. J Plankton Res 22:447–472

    Article  CAS  Google Scholar 

  • Ghoshal G, Banerjee UC, Chisti Y, Shivhare US (2012) Optimization of xylanase production from Penicillium citrinum in solid-state fermentation. Chem Biochem Eng Q 26:61–69

    CAS  Google Scholar 

  • Gilstad M, Sakshaug E (1990) Growth rates of ten diatom species from the Barents Sea at different irradiances and day lengths. Mar Ecol Prog Ser 64:169–173

    Article  Google Scholar 

  • Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507

    Article  CAS  Google Scholar 

  • Grothe E, Moo-Young M, Chisti Y (1999) Fermentation optimization for the production of poly(β-hydroxybutyric acid) microbial thermoplastic. Enzym Microb Technol 25:132–141

    Article  CAS  Google Scholar 

  • Hendey NI (1964) An introductory account of the smaller algae of British coastal waters, part V, Bacillariophyceae (diatoms). HMSO, London

  • Hervé V, Derr J, Douady S, Quinet M, Moisan L, Lopez PJ (2012) Multiparametric analyses reveal the pH-dependence of silicon biomineralization in diatoms. PLoS One 7:e46722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hockin NL, Mock T, Mulholland F, Kopriva S, Malin G (2012) The response of diatom central carbon metabolism to nitrogen starvation is different from that of green algae and higher plants. Plant Physiol 158:299–312

    Article  CAS  PubMed  Google Scholar 

  • Hustedt F (1930) Die Süsswasser-Flora Mitteleuropas: Heft 10: Bacillariophyta (Diatomeae), 2nd edn. Verlag Von Gustav Fischer, Jena, p 466

    Google Scholar 

  • Jayakumar S, Yusoff MM, Rahim MHA, Maniam GP, Govindan N (2017) The prospect of microalgal biodiesel using agro-industrial and industrial wastes in Malaysia. Renew Sust Energ Rev 72:33–47

    Article  CAS  Google Scholar 

  • Kociolek JP, Graeff CL, Lowe RL (2010) A new freshwater Gyrosigma (Bacillariophyceae) species from Hawaii. Pol Bot J 55:65–71

    Google Scholar 

  • Kuppusamy P, Yusoff MM, Maniam GP, Govindan N (2017) Potential applications of diatoms in medicinal and therapeutic approaches—a review. Indian J Geomarine Sci 46:663–667

    Google Scholar 

  • Lebeau T, Robert J-M (2003) Diatom cultivation and biotechnologically relevant products. Part II: Current and putative products. Appl Microbiol Biotechnol 60:624–632

    Article  CAS  PubMed  Google Scholar 

  • Leterme SC (2015) The oil production capacity of diatoms. Ann Aquac Res 2:article 1007

    Google Scholar 

  • Levine IA, Fleurence J (eds) (2018) Microalgae in health and disease prevention. Academic, London

    Google Scholar 

  • Lewin J, Hellebust JA (1970) Heterotrophic nutrition of the marine pennate diatom, Cylindrotheca fusiformis. Can J Microbiol 16:1123–1129

    Article  CAS  PubMed  Google Scholar 

  • Lorenz RT, Cysewski GR (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18:160–167

    Article  CAS  PubMed  Google Scholar 

  • Luangpipat T, Chisti Y (2017) Biomass and oil production by Chlorella vulgaris and four other microalgae—effects of salinity and other factors. J Biotechnol 257:47–57

    Article  CAS  PubMed  Google Scholar 

  • Maddox IS, Reichert SH (1997) Use of response surface methodology for the rapid optimization of microbiological media. J Appl Bacteriol 43:197–204

    Article  Google Scholar 

  • Mazzuca Sobczuk T, Chisti Y (2010) Potential fuel oils from the microalga Choricystis minor. J Chem Technol Biotechnol 85:100–108

    Article  CAS  Google Scholar 

  • Molina Grima E, Belarbi E-H, Acién Fernández FG, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515

    Article  CAS  PubMed  Google Scholar 

  • Montagnes DJS, Franklin DJ (2001) Effect of temperature on diatom volume, growth rate, and carbon and nitrogen content: reconsidering some paradigms. Limnol Oceanogr 46:2008–2018

    Article  CAS  Google Scholar 

  • Montoya C, Cochard B, Flori A, Cros D, Lopes R, Cuellar T, Espeout S, Syaputra Villeneuve P, Pina M, Ritter E, Leroy T, Billotte N (2014) Genetic architecture of palm oil fatty acid composition in cultivated oil palm (Elaeis guineensis Jacq.) compared to its wild relative E. oleifera (H.B.K) Cortés. PLoS One 9:e95412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munir M, Qureshi R, Arshad M, Chaudhry AK, Laghari MK (2012) Taxonomic study of Bacillariophyta from Kallar Kahar lake Chakwal, Punjab, Pakistan. Pak J Bot 44:1805–1814

    Google Scholar 

  • Nalewajko C (1966) Dry weight, ash, and volume data for some freshwater planktonic algae. J Fish Res Board Can 23:1285–1288

    Article  Google Scholar 

  • Okamoto N, Nagumo T, Tanaka J, Inouye I (2003) An endophytic diatom Gyrosigma coelophilum sp. nov. (Naviculales, Bacillariophyceae) lives inside the red alga Coelarthrum opuntia (Rhodymeniales, Rhodophyceae). Phycologia 42:498–505

    Article  Google Scholar 

  • Okogwu IO, Ugwumba AO (2013) Seasonal dynamics of phytoplankton in two tropical rivers of varying size and human impact in southeast Nigeria. Rev Biol Trop 61:1827–1840

    PubMed  Google Scholar 

  • Pandey A, Chang J-S, Soccol CR, Lee DJ, Chisti Y (eds) (2019) Biofuels from algae, second edn. Elsevier, Amsterdam, p 579

    Google Scholar 

  • Patel G, Patil MD, Soni S, Khobragade TP, Chisti Y, Banerjee UC (2016) Production of mycophenolic acid by Penicillium brevicompactum—a comparison of two methods of optimization. Biotechnol Reports 11:77–85

    Article  Google Scholar 

  • Patil MD, Dev MJ, Tangadpalliwar S, Patel G, Garg P, Chisti Y, Banerjee UC (2017) Ultrasonic disruption of Pseudomonas putida for the release of arginine deiminase: kinetics and predictive models. Bioresour Technol 233:74–83

    Article  CAS  PubMed  Google Scholar 

  • Posten C, Walter C (eds) (2012a) Microalgal biotechnology: potential and production. de Gruyter, Berlin

    Google Scholar 

  • Posten C, Walter C (eds) (2012b) Microalgal biotechnology: integration and economy. de Gruyter, Berlin

    Google Scholar 

  • Rosly NF, Abdul Razak RA, Kuppusamy P, Yusoff MMY, Govindan N (2013) Induction of bioactive compound composition from marine microalgae (Lyngbya sp.) by using different stress condition. J Coast Life Med 1:205–209

    Google Scholar 

  • Sánchez Mirón A, Cerón García M-C, Contreras Gómez A, García Camacho F, Molina Grima E, Chisti Y (2003) Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochem Eng J 16:287–297

    Article  CAS  Google Scholar 

  • Sayanova O, Mimouni V, Ulmann L, Morant-Manceau A, Pasquet V, Schoefs B, Napier JA (2017) Modulation of lipid biosynthesis by stress in diatoms. Philos Trans R Soc Lond B 372:20160407

    Article  CAS  Google Scholar 

  • Scholz B, Liebezeit G (2013) Biochemical characterisation and fatty acid profiles of 25 benthic marine diatoms isolated from the Solthörn tidal flat (southern North Sea). J Appl Phycol 25:453–465

    Article  CAS  Google Scholar 

  • Shene C, Chisti Y, Bustamante M, Rubilar M (2016a) Effect of CO2 in the aeration gas on cultivation of the microalga Nannochloropsis oculata: experimental study and mathematical modeling of CO2 assimilation. Algal Res 13:16–29

    Article  Google Scholar 

  • Shene C, Chisti Y, Vergara D, Burgos C, Rubilar M, Bustamante M (2016b) Production of eicosapentaenoic acid by Nannochloropsis oculata: effects of carbon dioxide and glycerol. J Biotechnol 239:47–56

    Article  CAS  PubMed  Google Scholar 

  • Shene C, Asenjo JA, Chisti Y (2018) Metabolic modelling and simulation of the light and dark metabolism of Chlamydomonas reinhardtii. Plant J 96:1076–1088

    Article  CAS  PubMed  Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry: Chemical equilibria and rates in natural waters, third edn. Wiley, New York

    Google Scholar 

  • Tanaka N (1984) The cell division rates of ten species of attaching diatoms in natural seawater. Nippon Suisan Gakkaishi 50:969–972

    Article  Google Scholar 

  • Taraldsvik M, Myklestad S (2000) The effect of pH on growth rate, biochemical composition and extracellular carbohydrate production of the marine diatom Skeletonema costatum. Eur J Phycol 35:189–194

    Article  Google Scholar 

  • Thaler M, Kaczmarska I (2009) Gyrosigma orbitum sp. nov. (Bacillariophyta) from a salt marsh in the Bay of Fundy, eastern Canada. Bot Mar 52:60–68

    Article  Google Scholar 

  • Tuchman NC, Schollett MA, Rier ST, Geddes P (2006) Differential heterotrophic utilization of organic compounds by diatoms and bacteria under light and dark conditions. Hydrobiologia 561:167–177

    Article  CAS  Google Scholar 

  • Unpaprom Y, Tipnee S, Ramraj R (2015) Biodiesel from green alga Scenedesmus acuminatus. Int J Sustain Green Energy 4:1–6

    Article  CAS  Google Scholar 

  • Wang L-C, Lee T-Q, Chen S-H, Wu J-T (2010) Diatoms in Liyu lake, eastern Taiwan. Taiwania 55:228–242

    CAS  Google Scholar 

  • Wee LL, Annuar MSM, Ibrahim S, Chisti Y (2011) Enzyme-mediated production of sugars from sago starch: statistical process optimization. Chem Eng Commun 198:1339–1353

    Article  CAS  Google Scholar 

  • Wehr JD, Sheath RG (eds) (2003) Freshwater algae of North America: ecology and classification. Academic, London

    Google Scholar 

  • Werner D (ed) (1977) The biology of diatoms. Blackwell, Los Angeles

    Google Scholar 

  • Wiktor J, Tatarek A, Węsławski JM, Kotwicki L, Poulin M (2016) Colonies of Gyrosigma eximium: a new phenomenon in Arctic tidal flats. Oceanologia 58:336–340

    Article  Google Scholar 

  • Yang Z-K, Niu Y-F, Ma Y-H, Xue J, Zhang M-H, Yang W-D, Liu J-S, Lu S-H, Guan Y, Li H-Y (2013) Molecular and cellular mechanisms of neutral lipid accumulation in diatom following nitrogen deprivation. Biotechnol Biofuels 6:67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhukova NV, Aizdaicher NA (1995) Fatty acid composition of 15 species of marine microalgae. Phytochemistry 39:351–356

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Central Laboratory of UMP is acknowledged for allowing access to SEM and GCMS instruments and providing technical assistance with sample preparation and analyses. Stat-Ease, Inc., Minneapolis, USA, is thanked for providing the statistics software used.

Funding

The authors gratefully acknowledge Universiti Malaysia Pahang (UMP) for financial support through the Internal Research Grant No. RDU1703167 and Flagship Grant No. RDU182205.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuf Chisti.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Govindan, N., Maniam, G.P., Yusoff, M.M. et al. Statistical optimization of lipid production by the diatom Gyrosigma sp. grown in industrial wastewater. J Appl Phycol 32, 375–387 (2020). https://doi.org/10.1007/s10811-019-01971-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-019-01971-x

Keywords

Navigation