Skip to main content

A review of current uses and potential biotechnological applications of seaweeds from the Macaronesian region (Central-East Atlantic Ocean)

Abstract

Since the 1980s phycological research efforts have been made in the Macaronesian Region, largely focusing on the floristics and systematics of those macroalgae present at the archipelagos of the Azores, Madeira, Selvagens, Canaries, and Cabo Verde Islands. Major publications from those studies have allowed cataloging the diversity of macroalgae growing along their volcanic coastlines, but have also described the historical and current uses of some seaweeds. Perhaps most importantly, potential industrial applications from selected seaweeds could result in novel economic resources and income generation as key elements of the Blue Economy Strategies in the region. This review presents the seaweed resources from the Macaronesia Region, which collectively includes 52 taxa, of which—9 greens, 14 browns, and 29 reds are cataloged. Some geographic areas, e.g., the Cabo Verde Islands and Madeira, require more intense field research in order to investigate selected, target seaweeds of interest which may become new marine resources for commercial exploitation. Future development of this emerging marine biotechnological sector will depend on the sustainable management of wild stocks, as well as implementation of culture techniques for biomass production, adapted to the environmental and socio-economic conditions of the respective archipelagos. In parallel, capacity building actions are foreseen to boost the large potential of Macaronesian seaweeds as key elements of the local Blue Economy.

This is a preview of subscription content, access via your institution.

References

  • Afonso-Carrillo J (2003) Aprovechamiento industrial de algas marinas canarias para la extracción de agar. Puerto de la Cruz (1951- 1966). El Pajar. Cuaderno de Etnografía Canaria 15:173–184

    Google Scholar 

  • Afonso-Carrillo J (2006) Amenazas a la diversidad de plantas marinas por el desarrollo urbano en el litoral: el ejemplo de Puerto de la Cruz. In: Afonso-Carrillo J (ed) Actas de la Semana homenaje a Telesforo Bravo. Instituto de Estudios Hispánicos de Canarias, La Laguna (Spain), pp 39–69

    Google Scholar 

  • Andreu Mediero B (2017) The alga industry in the former Spanish Sahara. Vegueta Anuario de la Facultad de Geografía e Historia 17:323–340

    Google Scholar 

  • ASC-MSC (2017) ASC-MSC Seaweed (Algae) Standard v1.0. 22 November 2017. Aquaculture Stewardship Council (ASC) and the Marine Stewardship Council (MSC). www.asc-aqua.org/seaweed-standard. Accessed 18 Feb 2019

  • Barreto MC, Mendonça E, Gouveia V, Anjos C, Medeiros JS, Seca AML, Neto AI (2012) Macroalgae from S. Miguel Island as a potential source of and antioxidant products. Arquipelago. Life Mar Sci 29:53–58

    Google Scholar 

  • Boopathy NS, Kathiresan K (2013) Anticancer agents derived from marine algae. In: Domínguez H (ed) Functional ingredients from algae for foods and nutraceuticals. Woodhead Publishing Ltd., Cambridge, pp 307–337

    Google Scholar 

  • Buschmann AH, Prescott S, Potin P, Faugeron S, Vásquez JA, Camus C, Infante J, Hernández-González MC, Gutíerrez A, Varela DA (2014) The status of kelp exploitation and marine agronomy, with emphasis on Macrocystis pyrifera, in Chile. Adv Bot Res 71:161–188

    Google Scholar 

  • Buschmann AH, Camus C, Infante J, Neori A, Israel A, Hernández-González MC, Pereda SV, Gomez-Pinchetti JL, Golberg A, Tadmor-Shalev N, Critchley AT (2017) Seaweed production: overview of the global state of exploitation, farming and emerging research activity. Eur J Phycol 52:391–406

    Google Scholar 

  • Campos AM, Matos J, Afonso C, Gomes R, Bandarra NM, Cardoso C (2019) Azorean macroalgae (Petalonia binghamiae, Halopteris scoparia and Osmundea pinnatifida) bioprospection: a study of fatty acid profiles and bioactivity. Int J Food Sci Technol 54:880–890

    CAS  Google Scholar 

  • Cen-Pacheco F, Villa-Pulgarin JA, Mollinedo F, Norte M, Daranas AH, Fernández JJ (2011a) Cytotoxic oxasqualenoids from the red alga Laurencia viridis. Eur J Med Chem 46:3302–3308

    CAS  PubMed  Google Scholar 

  • Cen-Pacheco F, Villa-Pulgarin JA, Mollinedo F, Norte M, Fernández JJ, Daranas AH (2011b) New polyether triterpenoids from Laurencia viridis and their biological evaluation. Mar Drugs 9:2220–2235

    Google Scholar 

  • Cen-Pacheco F, Santiago-Benitez AJ, García C, Alvarez-Méndez SJ, Martín-Rodríguez AJ, Norte M, Martín VS, Gavín JA, Fernández JJ, Daranas AH (2015) Oxaesqualenoides from Laurencia viridis: combined spectroscopic computational analysis and antifouling potentia. J Nat Prod 78:712–721

    CAS  PubMed  Google Scholar 

  • Chung IK, Sondak CFA, Beardall J (2017) The future of seaweed aquaculture in a rapidly changing world. Eur J Phycol 52:495–505

    CAS  Google Scholar 

  • Cornish ML, Garbary D (2010) Antioxidants from macroalgae: potential applications in human health and nutrition. Algae 25:155–171

    CAS  Google Scholar 

  • De Vera-Soto JG (2014) Efecto del aporte de nutrientes sobre la producción de macroalgas en condiciones de co-cultivo. Crecimiento, biofiltración y características fisiológicas. Master Thesis, University of Las Palmas de Gran Canaria, Spain 85 pp.

  • De Vet J-M, Edwards J, Bocci M (2016) Blue growth and smart specialisation: how to catch maritime growth through ‘Value Nets’, S3 Policy Brief Series No. 17/2016. European Commission. https://ec.europa.eu/jrc; Accessed on 10 February 2019

  • Despacho Normativo 15/ (2017) Secretaria Regional do Mar, Ciência e Tecnologia. Jornal Oficial Região Autónoma da Açores. 16 May, 3 pp. https://jo.azores.gov.pt/api/public/ato/fed77cae-340a-41a8-9ceb-55f7d5c4030f/pdfOriginal. Accessed on 18 February 2019

  • Domínguez H (2013) Functional ingredients from algae for foods and nutraceuticals. Woodhead Publishing Ltd., Cambridge, p 768

    Google Scholar 

  • Doty MS, Caddy JF, Santelices B (eds) (1987) Case studies of seven commercial seaweed resources. FAO fisheries technical paper 281. FAO, Rome, p 161

    Google Scholar 

  • European Commission (2012) Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: Blue Growth: Opportunities for marine and maritime sustainable growth, COM (2012) 494 final. http://ec.europa.eu/maritimeaffairs/policy/blue_growth/documents/com_2012_494_en.pdf. Accessed on 18 February 2019

  • European Commission (2017a) The outermost regions: European lands in the World. 48 pp. ISBN 978-92-79-73199-0. European Commission, Directorate-General for Regional and Urban Policy, Brussels. http://ec.europa.eu/regional_policy/index_en.htm, Accessed on 10 February 2019

  • European Commission (2017b) Bioeconomy development in EU regions. “Mapping of EU Member States’ / regions’ Research and Innovation plans and Strategies for Smart Specialisation (RIS3) on Bioeconomy”. Final Report. https://ec.europa.eu/research/bioeconomy/pdf/publications/bioeconomy_development_in_eu_regions.pdf; accessed on 18 February 2019

  • Evans FD, Cricthley AT (2014) Seaweeds for animal production use. J Appl Phycol 26:891–899

    CAS  Google Scholar 

  • Felaco Durán L (2014) Evaluation of a multitrophic biofiltration system with new algae species and the sea cucumber Holothuria sanctori. Master Thesis, University of Las Palmas de Gran Canaria, Spain 72 pp.

  • Fernández JJ, Souto ML, Norte M (1998) Evaluation of the cytotoxic activity of polyethers isolated from Laurencia. Bioorgan Med Chem 6:2237–2243

    Google Scholar 

  • Fernández JJ, Souto ML, Gil LV, Norte M (2005) Isolation of naturally occuring dactylomelane metabolites as Laurencia constituents. Tetrahedron 61:8910–8915

    Google Scholar 

  • Fernández-Palacios JM, Dias E (2001) Marco biogeográfico macaronésico. In: Fernández-Palacios JM, Martín-Esquivel JL (eds) Naturaleza de las Islas Canarias. Ecología y Conservación. Editorial Turquesa, S/C Tenerife, Spain, pp 39–44

    Google Scholar 

  • Fleurence J, Levine I (eds) (2016) Seaweed in health and disease prevention. Academic Press, London

    Google Scholar 

  • Fralick RA, Andrade F (1981) The growth, reproduction, harvesting and management of Pterocladia pinnata (Rhodophyceae) in the Azores, Portugal. In: Levring T (ed). Proceedings of the 10th International Seaweed Symposium, Goteborg (Sweden). Walter de Gruter, Germany. pp 289–295

    Google Scholar 

  • Freile-Pelegrin Y, Tadezmir D (2019) Seaweeds to the rescue of forgotten diseases: a review. Bot Mar 62. https://doi.org/10.1515/bot-2018-0071

    Google Scholar 

  • GaCS (2018) Governo Regional estimula atividades que geram rendimentos complementares aos pescadores açorianos. Presidência do Governo Regional dos Açores. Gabinete de Apoio à Comunicação Social, https://goo.gl/QiiihF; Accessed on 3 April 2018

  • Gómez Pinchetti JL, Martell-Quintana A (2016) Algae production and their potential contribution to a nutritional sustainability. J Environ Health Sci 2:1–3

    Google Scholar 

  • Gómez-Pinchetti JL, del Campo FE, Moreno Díez P, García-Reina G (1998) Nitrogen availability influences the biochemical composition and photosynthesis of tank cultivated Ulva rigida (Chlorophyta). J Appl Phycol 10:383–389

    Google Scholar 

  • Gouveia V, Seca AML, Barreto MC, Neto AI, Kijjoa A, Silva MAS (2013a) Cytotoxic meroterpenoids from the macroalga Cystoseira abies-marina. Phytochem Lett 6:593–597

    CAS  Google Scholar 

  • Gouveia V, Seca AML, Barreto MC, Pinto DCGA (2013b) Di- and sesquiterpenoids from Cystoseira genus: structure, intra-molecular transformations and biological activity. Mini-Rev Med Chem 13:1150–1159

    CAS  PubMed  Google Scholar 

  • Guiry MD, Guiry GM (2019) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org; Accessed on 07 April 2019

  • Gutiérrez-Cepeda A, Fernández JJ, Norte M, Montalvão S, Tammela P, Souto ML (2015) Acetate-derived metabolites from the brown alga Lobophora variegata. J Nat Prod 78:1716–1722

    PubMed  Google Scholar 

  • Gutiérrez-Cepeda A, Fernández JJ, Norte M, López-Rodríguez M, Brito I, Muller CD, Souto ML (2016) Additional insights into the obtusallene family: components of Laurencia marilzae. J Nat Prod 79:1184–1188

    PubMed  Google Scholar 

  • Haroun Tabraue RJ, Gil-Rodríguez MC, Wildpret de La Torre W, Prud’homme van Reine WF (2009) Marine plants of the Canary Islands. BlaBla Ediciones, Las Palmas de Gran Canaria, p 359

  • Haroun RJ, Gil-Rodríguez MC, Díaz de Castro J, Prud’homme van Reine WE (2002) A checklist of the marine plants from the Canary Islands (Central Eastern Atlantic Ocean). Bot Mar 45:139–169

    Google Scholar 

  • Herr D, Pidgeon E, Laffoley D (2012) Blue Carbon Policy Framework: based on the discussion of the International Blue Carbon Policy Working Group. IUCN Gland, Switzerland and Arlington, USA. VI+39pp

  • Hurtado AQ, Gerung GS, Yasir S, Critchley AT (2014) Cultivation of tropical red seaweeds in the BIMP-EAGA región. J Appl Phycol 26:707–718

    Google Scholar 

  • Illera-Vives M, Labandeira SS, López-Mosquera M (2013) Production of compost from marine waste: evaluation of the product for use in ecological agriculture. J Appl Phycol 25:1395–1403

    Google Scholar 

  • Illera-Vives M, Labandeira SS, Iglesias Loureiro L, López-Mosquera M (2017) Agronomic assessment of a compost consisting of seaweed and fish waste as an organic fertilizer for organic potato crops. J Appl Phycol 29:1663–1671

    Google Scholar 

  • Khan AH, Levac E, Guelphen LV, Pohlec G, Chmuraa GL (2018) The effect of global climate change on the future distribution of economically important macroalgae (seaweeds) in the northwest Atlantic. Facets 3:275–286

    Google Scholar 

  • Kim S-K (2011) Marine medicinal foods. Implications and applications, macro and microalgae. Adv Food Nutr Res 64:2–466

    Google Scholar 

  • Kraan S, Guiry MD (2006) The seaweed resources of Ireland. In: Critchley AT, Ohno M, Largo DB (eds) World seaweed resources: an authoritative reference. Expert-Center for Taxonomic Identification, UNESCO, París, pp 1–53

    Google Scholar 

  • Li YX, Li Y, Kim SK (2015) Anticancer compounds from marine algae. In: Kim SK, Chojnacka K (eds) Marine algae extracts: processes. Weinheim, Products and Applications. Wiley-VCH, pp 267–276

    Google Scholar 

  • Mac Monagail M, Cornish L, Morrison L, Araújo R, Critchley AT (2017) Sustainable harvesting of wild seaweed resources. Eur J Phycol 52:371–390

    Google Scholar 

  • Machín-Sánchez M, Aylagas A, Gil-Rodríguez MC (2011) Revisión del género Laurencia en las Islas Canarias. I. Acerca de Laurencia dendroidea y L. majuscula (Ceramiales, Rhodomelaceae). Vieraea 39:35–51

    Google Scholar 

  • Machín-Sánchez M, Asensio-Ramos M, Hernández-Borges J, Gil-Rodríguez MC (2014) CE-MS fingerprinting of Laurencia complex algae (Rhodophyta). J Separat Sci 37:711–716

    Google Scholar 

  • Masuda A, Kogame MK, Arisawa S, Suzuki M (1998) Morphology and halogenated secondary metabolites of three Gran Canaria species of Laurencia (Ceramiales, Rhodophyta). Bot Mar 41:265–277

    Google Scholar 

  • Michalak I, Chojnacka K (2016) The potential usefulness of a new generation of agro-products based on raw materials of biological origin. Acta Sci Pol Hortorum Cultus 15:97–120

    Google Scholar 

  • Michanek G (1975) Seaweed resources of the ocean. FAO Fisheries Technological Papers, No. 138. FAO, Rome, Italy 127 pp

    Google Scholar 

  • Morales-Amador A, de Vera CR, Márquez-Fernández O, Daranas AH, Padrón JM, Fernández JJ, Souto ML, Norte M (2018) Pinnatifidenyne-derived ethynyl oxirane acetogenins from Laurencia viridis. Mar Drugs 16:E5

    Google Scholar 

  • Morton B, Britton JC, De Frias AM, Martins H (eds) (1998) Coastal ecology of the Azores. Sociedade Afonso Chaves, Ponta Delgada (Azores) Portugal, p 249

  • Nellemann C, Corcoran E, Duarte CM, Valdés L, De Young C, Fonseca L, Grimsditch G (eds) (2009). Blue carbon. A Rapid Response Assessment. United Nations Environment Programme, GRID-Arendal, Norway. 80 pp. http://www.grida.no; Accessed on 10 January 2019

  • Neto AI, Tittley I, Raposeiro P (2005) Flora Marinha do Litoral dos Açores [Rocky Shore Marine Flora of the Azores]. Secretaria Regional do Ambiente e do Mar, Açores, Portugal.156 pp.

  • Neto AI, Viera MA, Haroun R (2014) A synthetic overview of marine phycological studies in the Macaronesian Archipelagos. Silva Lusitana, Special Issue (FLORAMAC2012): 217-244

  • Nogueria CCR, Texeira VL (2016) Seaweeds as source of new bioactive prototypes. In: Thajuddin N, Dhanasekaran D (eds) Algae—organisms for imminent biotechnology. IntechOpen, London, pp 307–330

    Google Scholar 

  • Ohno M, Critchley AT (1993) Seaweed cultivation and marine ranching. Kanagawa International Fisheries Training Center, Japan International Cooperation Agency (JICA), Japan. XII + 431 pp.

  • Paiva LS, Patarra RF, Neto AI, Lima EMC, Baptista JAB (2012) Antioxidant activity of macroalgae from the Azores. Arquipélago. Life Mar Sci 29:1–6

    Google Scholar 

  • Paiva L, Lima E, Patarra RF, Neto AI, Baptista J (2014a) Edible Azorean macroalgae as source of rich nutrients with impact on human health. Food Chem 164:128–135

    CAS  PubMed  Google Scholar 

  • Paiva L, Lima E, Baptista J, Patarra RF, Neto AI (2014b) Fatty acid composition of Sargassum (Fucales, Phaeophyta) species harvested from littoral zone of S. Miguel (Azores). Silva Lusitana 22:245–256

    Google Scholar 

  • Paiva LS, Lima EMC, Neto AI, Baptista JAB (2015) Screening for angiotensin I-converting enzyme (ACE) inhibitory activity of enzymatic hydrolysates obtained from Azorean macroalgae. Arquipélago. Life Mar Sci 3:11–17

    Google Scholar 

  • Paiva L, Lima E, Neto AI, Baptista J (2016a) Angiotensin I-converting enzyme (ACE) inhibitory activity of Fucus spiralis macroalgae and influence of the extracts storage temperature—a short report. J Pharmaceut Biomed Anal 131:503–507

    CAS  Google Scholar 

  • Paiva L, Lima E, Neto AI, Marcone M, Baptista J (2016b) Health-promoting ingredients from four selected Azorean macroalgae. Food Res Int 89:432–438

    CAS  PubMed  Google Scholar 

  • Paiva L, Lima E, Neto AI, Baptista J (2016c) Isolation and characterization of angiotensin I-converting enzyme (ACE) inhibitory peptides from Ulva rigida C. Agardh protein hydrolysate. J Funct Foods 26:65–76

    CAS  Google Scholar 

  • Paiva L, Lima E, Neto AI, Baptista J (2017a) Nutritional and functional bioactivity value of selected Azorean macroalgae: Ulva compressa, U. rigida, Gelidium microdon and Pterocladiella capillacea. J Food Sci 82:1757–1764

    CAS  PubMed  Google Scholar 

  • Paiva L, Lima E, Neto AI, Baptista J (2017b) Angiotensin I-converting enzyme (ACE) inhibitory activity, antioxidant properties, phenolic content and amino acids profiles of Fucus spiralis L. protein hydrolysate fractions. Mar Drugs 15:311

    PubMed Central  Google Scholar 

  • Patarra RF, Paiva L, Neto AI, Lima E, Baptista J (2011) Nutritional value of selected macroalgae. J Appl Phycol 23:205–208

    CAS  Google Scholar 

  • Patarra RF, Leite J, Pereira R, Baptista J, Neto AI (2013) Fatty acid composition of selected macrophytes. Nat Product Res 27:665–669

    CAS  Google Scholar 

  • Patarra RF, Carreiro AS, Lloveras AA, Abreu MH, Buschmann AH, Neto AI (2017) Effects of light, temperature and stocking density on Halopteris scoparia growth. J Appl Phycol 29:405–411

    Google Scholar 

  • Pauli G (2010) The blue economy. 10 years, 100 innovations, 1 million jobs. Paradigm Publishers. Tao, New Mexico, p 336

    Google Scholar 

  • Pendleton L, Donato DC, Murray BC, Crooks S, Jenkins WA, Sifleet S, Craft C, Fourqurean JW, Kauffman JB, Marbà N, Megonigal P, Pidgeon E, Herr D, Gordon D, Baldera A (2012) Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS One 7:e43542

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez Lloréns JL, Hernández Carrero I, Vergara Oñate JJ, Brun M, León FG, A. (2016) ¿Las algas se comen? Un periplo por la biología, la historia, las curiosidades y la gastronomía. Univ. de Cádiz, Editorial UCA, Spain, p 336

    Google Scholar 

  • Portaria 1/ (2014) Secretaria Regional dos Recursos Naturais. Jornal Oficial Região Autónoma da Açores. 10 January, 18 pp. https://jo.azores.gov.pt/api/public/ato/4bad83f3-28b7-41d7-bf39-b9fba845a053/pdfOriginal; accessed on 18 February 2019

  • Portaria 44/ (2014) Secretaria Regional dos Recursos Naturais. Jornal Oficial Região Autónoma da Açores. 8 July, 27 pp. https://jo.azores.gov.pt/api/public/ato/7fefa8bf-6874-4c77-9f58-696796d935e9/pdfOriginal; accessed on 18 February 2019

  • Portaria 57/ (2018) Secretaria Regional do Mar, Ciência e Tecnologia. Jornal Oficial Região Autónoma da Açores. 30 May 2018, 36 pp. https://jo.azores.gov.pt/api/public/ato/943b33b9-f25a-4894-963e-4ea075e1c2f4/pdfOriginal; accessed on 18 February 2019

  • Portaria 68/ (2016) Secretaria Regional do Mar, Ciência e Tecnologia. Jornal Oficial Região Autónoma da Açores. 1 July, 26 pp. https://jo.azores.gov.pt/api/public/ato/f9df1763-ddff-4859-a53d-e5128770e730/pdfOriginal; Accessed on 18 February 2019

  • Portaria 69/ (2018) Secretaria Regional do Mar, Ciência e Tecnologia. Jornal Oficial Região Autónoma da Açores. 22 June 2018, 44 pp. https://jo.azores.gov.pt/api/public/ato/7f43820e-ddd1-47df-bdd8-b6120a24f112/pdfOriginal; Accessed on 18 February 2019

  • Portillo Hahnefeld E (2008) Arribazones de algas y plantas marinas en Gran Canaria. Carácterísticas, gestión y posibles usos. Instituto Tecnológico de Canarias SA, Canary Islands, p 88

    Google Scholar 

  • Prud’homme van Reine W, Haroun RJ, Kostermans LBT (2005) Checklist of seaweeds in the Atlantic Ocean and in the Cape Verde Archipelago. In: Actas do IV Sympósio “Fauna e Flora das Ilhas Atlânticas” Ministério do Ambiente, Agricultura e Pescas. Republic of Cape Verd, Praia (Ilha de Santiago), pp 13–25

    Google Scholar 

  • Qin Y (ed) (2018) Bioactive seaweeds for food applications. Natural Ingredients for Healthy Diets. Elsevier / Academic Press, London, p 320

    Google Scholar 

  • Ramírez R, Tuya F, Haroun RJ (2007) El Intermareal de Canarias. BIOGES, Las Palmas, Islas Canarias, Depósito legal GC-448-2008. 52 pp.

  • Rebours C, Marinho-Soriano E, Zertuche-González JA, Hayashi L, Vásquez JÁ, Kradolfer P, Soriano G, Ugarte R, Abreu MA, Bay-Larsen I, Hovelsrud G, Rødven R, Robledo D (2014) Seaweeds: an opportunity for wealth and sustainable livelihood for coastal communities. J Appl Phycol 26:1939–1951

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rjiba-Ktita S, Chermiti A, Bodas R, France J, López S (2017) Aquatic plants and macroalgae as potential feed ingredients in ruminant diets. J Appl Phycol 29:449–458

    CAS  Google Scholar 

  • Salgado LT, Viana N, Andrade LR, Leal RN, Da Gama B, Attias M, Pereira RC, Amado Filho GM (2008) Intracellular storage, transport and exocytosis of halogenated compounds in marine red alga Laurencia obtusa. J Struct Biol 162:345–355

    CAS  PubMed  Google Scholar 

  • Santos R, Duarte P (1991) Marine plant harvest in Portugal. J Appl Phycol 3:11–18

    Google Scholar 

  • Seacolors (2014–16) Life project, http://www.seacolors.eu/index.php/en/; Accessed on 28 October 2018

  • SeaExpert (2018) Edible seaweed catalogue. http://www.seaexpert-azores.com/; Accessed on 3 April 2018

  • Silva M, Vieira LMM, Almeida AP, Silva AML, Seca AML, Barreto MC, Neto AI, Pedro M, Pinto E, Kijjoa A (2013) Chemical study and biological activity evaluation of two Azorean macroalgae: Ulva rigida and Gelidium microdon. Oceanography 1:102

    Google Scholar 

  • Sondak CFA, Ang PO Jr, Beardall J, Bellgrove A, Boo SM, Gerung GS, Hepburn CD, Hong DD, Hu Z, Kawai H, Largo D, Lee JA, Lim P-E, Mayakun J, Nelson WA, Oak JH, Phang S-M, Sahoo D, Peerapornpis Y, Yang Y, Chung IK (2017) Carbon dioxide mitigation potential of seaweed aquaculture beds (SABs). J Appl Phycol 29:2363–2373

    CAS  Google Scholar 

  • Stévant P, Revours C, Chapman A (2017) Seaweed aquaculture in Norway: recent industrial developments and future perspectives. Aquacult Int 25:1373–1390

    Google Scholar 

  • Toledo P, Haroun R, Fernández-Palacios H, Izquierdo M, Peña J (2000) First culture experiences of Haliotis coccinea canariensis in a biofilter system. J Shellfish Res 19:493–541

    Google Scholar 

  • Tseng CK (1984) Phycological research in the development of the Chinese seaweed industry. Hydrobiologia 116:7–18

    Google Scholar 

  • Tuya F, Haroun RJ (2009) Phytogeography of Lusitanian Macaronesia: biogeographic affinities in species richness and assemblage composition. Eur J Phycol 44:405–413

    Google Scholar 

  • Valdazo J, Viera-Rodríguez MA, Espino F, Haroun R, Tuya F (2017) Massive decline of Cystoseira abies-marina forests in Gran Canaria Island (Canary Islands, eastern Atlantic). Sci Mar 81:499–507

    Google Scholar 

  • Valdés L, Déniz-González I (2015) Oceanographic and biological features in the canary current large marine ecosystem. IOC UNESCO, Paris. IOC technical series, 115. 383 pp.

  • Viera MP, Gómez-Pinchetti JL, Courtois de Viçose G, Bilbao A, Suárez S, Haroun RJ, Izquierdo MS (2005) Suitability of three red macroalgae as a feed for the abalone Haliotis tuberculata coccinea Reeve. Aquaculture 248:75–82

    Google Scholar 

  • Viera MP, Courtois de Vicose G, Gómez-Pinchetti JL, Bilbao A, Fernández-Palacios H, Izquierdo MS (2011) Comparative performances of juvenile abalone (Haliotis tuberculata coccinea Reeve) fed enriched vs non-enriched macroalgae: effect on growth and body composition. Aquaculture 319:423–429

    CAS  Google Scholar 

  • Wallenstein FM, Neto AI, Álvaro NV, Tittley I, Azevedo JMN (2009) Coastal biotope definition manual for Oceanic Islands. Secretaria Regional do Ambiente e do Mar, Azores

    Google Scholar 

  • Wells ML, Potin P, Craigie JS, Raven JA, Merchant SS, Helliwell KE, Smith AG, Camire ME, Brawley SH (2017) Algae as nutritional and functional food sources: revisiting our understanding. J Appl Phycol 29:949–982

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Because the final list could be rather long and most probably incomplete, the authors would like to extend a general acknowledgement to the different governmental bodies that have provided some financial support during the last 40 years. This support has been core to determining the macroalgal composition, distributional ranges, biomass, and diverse applied research completed in the Macaronesian archipelagos. Former Master and PhD students who investigated Macaronesian macroalgae over several decades are also thanked for their important contributions. Dr. Alan Critchley and an anonymous reviewer are much acknowledged for their useful and accurate remarks to improve the final layout and key messages of this paper. Special thanks are given to Dr. Critchley for enriching discussions with the first co-author and his continuous and enthusiastic support of applied aspects of macroalgal species.

Funding

A.I. Neto benefited from the projects UID/BIA/00329/2013, 2015 - 2018 and UID/BIA/00329/2019 and DRCT-M1.1.a/005/Funcionamento-C/2016; R. Haroun was supported by funds provided by the European ERA-Chair project EcoAqua (Grant No. 621341).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Haroun.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Haroun, R., Gil-Rodríguez, M.C., Neto, A.I. et al. A review of current uses and potential biotechnological applications of seaweeds from the Macaronesian region (Central-East Atlantic Ocean). J Appl Phycol 31, 3777–3790 (2019). https://doi.org/10.1007/s10811-019-01889-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-019-01889-4

Keywords

  • Macroalgae
  • Historical uses
  • Azores
  • Madeira
  • Canary Islands
  • Cabo Verde
  • Human nutrition and health
  • Blue economy