Skip to main content
Log in

Response of trehalose, its degrading enzyme, sucrose, and floridoside/isofloridoside under abiotic stresses in Gracilariopsis lemaneiformis (Rhodophyta)

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Compatible solutes, including trehalose, sucrose, and floridoside/isofloridoside, are involved in acclimation to abiotic stresses in red algae. However, the contributions of these carbohydrates, especially trehalose and sucrose, to the stress response are still unclear. In the present study, the accumulation of these carbohydrates and the gene expression and activity of trehalase (the only degrading enzyme of trehalose) were studied under three stress conditions in the seaweed Gracilariopsis lemaneiformis. Under heat stress, trehalase activity was decreased to 0.38- and 0.46-fold at 24 and 48 h, respectively, whereas trehalose and floridoside/isofloridoside were significantly accumulated. Under salt stress, levels of trehalose and its degrading enzyme were almost unchanged; however, the floridoside amount increased between 12 and 24 h, and isofloridoside only exhibited a 1.44-fold increase at 48 h. Under drought stress, the transcriptional level and activity of trehalase were markedly upregulated with a maximum 4.36-fold increase (at 3 h) and 2.37-fold increase (at 48 h), respectively; trehalose levels remained unchanged; floridoside was significantly inhibited, and isofloridoside was almost unchanged except for a slight decrease at 24 h. In conclusion, trehalose and floridoside/isofloridoside were stimulated by heat stress; floridoside accumulation was triggered under hyperosmotic conditions; the mRNA abundance and activity of trehalase were activated by the drought treatment. However, sucrose made no contribution to abiotic stress tolerance in G. lemaneiformis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aeschbacher RA, Müller J, Boller T, Wiemken A (1999) Purification of the trehalase GMTRE1 from soybean nodules and cloning of its cDNA. GMTRE1 is expressed at a low level in multiple tissues. Plant Physiol 119:489–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avonce N, Mendoza-Vargas A, Morett E, Iturriaga G (2006) Insights on the evolution of trehalose biosynthesis. BMC Evol Biol 6:109–123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barraza A, Sánchez F (2013) Trehalases: a neglected carbon metabolism regulator? Plant Signal Behav 8:e24778

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benaroudj N, Lee DH, Goldberg AL (2001) Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J Biol Chem 276:24261–24267

    Article  CAS  PubMed  Google Scholar 

  • Bondu S, Cerantola S, Kervarec N, Deslandes E (2009) Impact of the salt stress on the photosynthetic carbon flux and 13C-label distribution within floridoside and digeneaside in Solieria chordalis. Photochemistry 70:173–184

    Article  CAS  Google Scholar 

  • Brodmann D, Schuller A, Ludwig-Müller J, Aeschbacher RA, Wiemken A, Boller T, Wingler A (2002) Induction of trehalase in Arabidopsis plants infected with the trehalose-producing pathogen Plasmodiophora brassicae. Mol Plant-Microbe Interact 15:693–700

    Article  CAS  PubMed  Google Scholar 

  • Carillo P, Feil R, Gibon Y, Satoh-Nagasawa N, Jackson D, Bläsing OE, Stitt M, Lunn JE (2013) A fluorometric assay for trehalose in the picomole range. Plant Methods 9:21–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang L, Sui Z, Fu F, Zhou W, Wang J, Kang KH, Zhang S, Ma J (2014) Relationship between gene expression of UDP-glucose pyrophosphorylase and agar yield in Gracilariopsis lemaneiformis (Rhodophyta). J Appl Phycol 26:2435–2441

    Article  CAS  Google Scholar 

  • Chen J, Song D, Luo Q, Mou T, Yang R, Chen H, He S, Yan X (2014) Determination of floridoside and isofloridoside in red algae by high-performance liquid chromatography-tandem mass spectrometry. Anal Lett 47:2307–2316

    Article  CAS  Google Scholar 

  • Collén J, Porcel B, Carré W, Ball SG, Chaparro C, Tonon T, Barbeyron T, Michel G, Noel B, Valentin K et al (2013) Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida. Proc Natl Acad Sci 110:5247–5252

    Article  PubMed  PubMed Central  Google Scholar 

  • Diehl N, Michalik D, Zuccarello GC, Karsten U (2019) Stress metabolite pattern in the eulittoral red alga Pyropia plicata (Bangiales) in New Zealand-mycosporine-like amino acids and heterosides. J Exp Mar Biol Ecol 510:23–30

    Article  CAS  Google Scholar 

  • El-Bashiti T, Hamamci H, Öktem HA, Yücel M (2005) Biochemical analysis of trehalose and its metabolizing enzymes in wheat under abiotic stress conditions. Plant Sci 169:47–54

    Article  CAS  Google Scholar 

  • Elbein AD, Pan YT, Pastuszak I, Carroll D (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13:17R–27R

    Article  CAS  PubMed  Google Scholar 

  • Houtte HV, Vandesteene L, López-Galvis L, Lemmens L, Kissel E, Carpentier S, Feil R, Avonce N, Beeckman T, Lunn JE, Van Dijck P (2013) Overexpression of the trehalase gene AtTRE1 leads to increased drought stress tolerance in Arabidopsis and is involved in abscisic acid-induced stomatal closure. Plant Physiol 161:1158–1171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ilhan S, Ozdemir F, Bor M (2015) Contribution of trehalose biosynthetic pathway to drought stress tolerance of Capparis ovata Desf. Plant Biol 17:402–407

    Article  CAS  PubMed  Google Scholar 

  • Islam MO, Kato H, Shima S, Tezuka D, Matsui H, Imai R (2019) Functional identification of a rice trehalase gene involved in salt stress tolerance. Gene 685:42–49

    Article  CAS  PubMed  Google Scholar 

  • Iturriaga G, Gaff DF, Zentella R (2000) New desiccation-tolerant plants, including a grass, in the central highlands of Mexico, accumulate trehalose. Aust J Bot 48:153–158

    Article  Google Scholar 

  • Jang IC, Oh SJ, Seo JS, Choi WB, Song SI, Kim CH, Kim YS, Seo HS, Choi YD, Nahm BH, Kim JK (2003) Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol 131:516–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karsten U, Görs S, Eggert A, West JA (2007) Trehalose, digeneaside, and floridoside in the Florideophyceae (Rhodophyta) - a reevaluation of its chemotaxonomic value. Phycologia 46:143–150

    Article  Google Scholar 

  • Kumar M, Gupta V, Trivedi N, Kumari P, Bijo AJ, Reddy CRK, Jha B (2011) Desiccation induced oxidative stress and its biochemical responses in intertidal red alga Gracilaria corticata (Gracilariales, Rhodophyta). Environ Exp Bot 72:194–201

    Article  CAS  Google Scholar 

  • Lee J, Yang EC, Graf L, Yang JH, Qiu H, Zelzion U, Chan CX, Stephens TG, Weber APM, Boo GH, Boo SM, Kim KM, Shin Y, Jung M, Lee SJ, Yim HS, Lee JH, Bhattacharya D, Yoon HS (2018) Analysis of the draft genome of the red seaweed Gracilariopsis chorda provides insights into genome size evolution in Rhodophyta. Mol Biol Evol 35:1869–1886

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Shang X, Liu J, Tan Q (2016) Changes in trehalose content, enzyme activity and gene expression related to trehalose metabolism in Flammulina velutipes under heat shock. Microbiology 162:1274–1285

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lunn JE (2007) Gene families and evolution of trehalose metabolism in plants. Funct Plant Biol 34:550–563

    Article  CAS  PubMed  Google Scholar 

  • Lunn JE, Delorge I, Figueroa CM, Dijck PV, Stitt M (2014) Trehalose metabolism in plants. Plant J 79:544–567

    Article  CAS  PubMed  Google Scholar 

  • Macler BA (1986) Regulation of carbon flow by nitrogen and light in the red alga, Gelidium coulteri. Plant Physiol 82:136–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Garcia M, van der Maarel MJEC (2016) Floridoside production by the red microalga Galdieria sulphuraria under different conditions of growth and osmotic stress. AMB Express 6:71–78

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matsuzaki M, Misumi O, Shin-I T, Maruyama S, Takahara M, Miyagishima SY, Mori T, Nishida K, Yagisawa F, Nishida K et al (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428:653–657

    Article  CAS  PubMed  Google Scholar 

  • Pade N, Linka N, Ruth W, Weber APM, Hagemann M (2015) Floridoside and isofloridoside are synthesized by trehalose 6-phosphate synthase-like enzymes in the red alga Galdieria sulphuraria. New Phytol 205:1227–1238

    Article  CAS  PubMed  Google Scholar 

  • Paul MJ, Primavesi LF, Jhurreea D, Zhang Y (2008) Trehalose metabolism and signaling. Annu Rev Plant Biol 59:417–441

    Article  CAS  PubMed  Google Scholar 

  • Pramanik MHR, Imai R (2005) Functional identification of a trehalose 6-phosphate phosphatase gene that is involved in transient induction of trehalose biosynthesis during chilling stress in rice. Plant Mol Biol 58:751–762

    Article  CAS  Google Scholar 

  • Qian F, Luo Q, Yang R, Zhu Z, Chen H, Yan X (2015) The littoral red alga Pyropia haitanensis uses rapid accumulation of floridoside as the desiccation acclimation strategy. J Appl Phycol 27:621–632

    Article  CAS  Google Scholar 

  • Reina-Bueno M, Argandoña M, Nieto JJ, Hidalgo-García A, Iglesias-Guerra F, Delgado MJ, Vargas C (2012) Role of trehalose in heat and desiccation tolerance in the soil bacterium Rhizobium etli. BMC Microbiol 12:207–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon-Colin C, Bessières M-A, Deslandes E (2002) An alternative HPLC method for the quantification of floridoside in salt-stressed cultures of the red alga Grateloupia doryphora. J Appl Phycol 14:123–127

    Article  CAS  Google Scholar 

  • Simon-Colin C, Kervarec N, Pichon R, Deslandes E (2004) NMR 13C-isotopic enrichment experiments to study carbon-partitioning into organic solutes in the red alga Grateloupia doryphora. Plant Physiol Biochem 42:21–26

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Wu J, Wang G, Kang N, Ooi HS, Shen T, Wang F, Yang R, Xu N, Zhao X (2018) Genomic analyses of unique carbohydrate and phytohormone metabolism in the macroalga Gracilariopsis lemaneiformis (Rhodophyta). BMC Plant Biol 18:94–104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tauzin AS, Giardina T (2014) Sucrose and invertases, a part of the plant defense response to the biotic stresses. Front Plant Sci 5:293–300

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang G, Zhao G, Feng Y, Xuan J, Sun J, Guo B, Jiang G, Weng M, Yao J, Wang B, Duan D, Liu T (2010) Cloning and comparative studies of seaweed trehalose-6-phosphate synthase genes. Mar Drugs 8:2065–2079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav UP, Ivakov A, Feil R, Duan GY, Walther D, Giavalisco P, Piques M, Carillo P, Hubberten HM, Stitt M, Lunn JE (2014) The sucrose-trehalose 6-phosphate (Tre6P) nexus: specificity and mechanisms of sucrose signalling by Tre6P. J Exp Bot 65:1051–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zang B, Li H, Li W, Deng XW, Wang X (2011) Analysis of trehalose-6-phosphate synthase (TPS) gene family suggests the formation of TPS complexes in rice. Plant Mol Biol 76:507–522

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Fei X, Wang G, Lin X, Chen W, Sui Z, Xu D, Zang X (2009) Genetic studies and large scale cultivation of Gracilaria lemaneiformis. J Ocean Univ China 39:947–954 (in Chinese)

    Google Scholar 

  • Zhao J, Yang Y, Zhao Q, Chen J, Yang R, Chen H (2019) Different variations of floridoside and isofloridoside in Pyropia haitanensis under heat resistance. J Nucl Agr Sci 33:0103–0111 (in Chinese)

    Google Scholar 

Download references

Funding

This project was supported by the National Key R&D Program of China (2018YFD0901502), the National Natural Science Foundation of China (31672674), and the Natural Science Foundation of Zhejiang Province (LY19C190003). This research was also sponsored by the K. C. Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nianjun Xu or Xue Sun.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, Y., Sun, P., Zhang, Y. et al. Response of trehalose, its degrading enzyme, sucrose, and floridoside/isofloridoside under abiotic stresses in Gracilariopsis lemaneiformis (Rhodophyta). J Appl Phycol 31, 3861–3869 (2019). https://doi.org/10.1007/s10811-019-01869-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-019-01869-8

Keywords

Navigation