Skip to main content

Advertisement

Log in

Luxury phosphorus uptake in microalgae

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Phosphorus (P) is central to storing and exchange of energy and information in cells including those of microalgae. The overwhelming majority of microalgae are naturally acclimated to low-P environments; hence, they are capable of taking up and storing P in large amounts whenever it becomes available. The ability to take up more P than necessary for immediate growth is termed “luxury uptake.” Understanding this phenomenon constitutes a crucial insight into nutrient-driven processes in natural algal communities such as harmful algal blooms, as well as into the operation of algae-based technologies for sustainable usage of P such as recycling of the nutrient from wastewater to biofertilizers. The bulk of P acquired during luxury uptake is stored in the form of inorganic polyphosphate, the compound with nearly ubiquitous presence and multifaceted function in the cell. Although seminal works on luxury P uptake and polyphosphate metabolism were carried out fifty years ago, application of modern “omics” approaches and advanced imaging microscopy techniques enabled obtaining a deeper mechanistic insight into these processes. Nevertheless, our knowledge about luxury P uptake remains much more limited in comparison with that about P shortage and mechanism tolerance to this stress in microalgae. In this review the knowledge of luxury P uptake originating from classical phycological and biochemical methods is confronted with the recently obtained understanding of molecular mechanisms of P transport to the cell, polyphosphate biosynthesis, regulation, and genetic control of these processes. Biotechnological implications of the knowledge about luxury P uptake accumulated to date are discussed in the context of algae-based approaches to sustained usage of nutrients and industrial cultivation of microalgae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Achbergerová L, Nahálka J (2011) Polyphosphate-an ancient energy source and active metabolic regulator. Microb Cell Factories 10:14170–14175

    Google Scholar 

  • Adamec J, Peverly JH, Parthasarathy MV (1979) Potassium in polyphosphate bodies of Chlorella pyrenoidosa (Chlorophyceae) as determined by X-ray microanalysis. J Phycol 15:466–468

    CAS  Google Scholar 

  • Aitchison P, Butt V (1973) The relation between the synthesis of inorganic polyphosphate and phosphate uptake by Chlorella vulgaris. J Exp Bot 24:497–510

    CAS  Google Scholar 

  • Allen MM (1984) Cyanobacterial cell inclusions. Annu Rev Microbiol 38:1–25

    CAS  PubMed  Google Scholar 

  • Aronova M, Leapman R (2012) Development of electron energy-loss spectroscopy in the biological sciences. MRS Bull 37:53–62

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ashford A, Lee ML, Chilvers G (1975) Polyphosphate in eucalypt mycorrhizas: a cytochemical demonstration. New Phytol 74:447–453

    CAS  Google Scholar 

  • Atlas E, Culberson C, Pytkowicz R (1976) Phosphate association with Na+, Ca2+ and Mg2+ in seawater. Mar Chem 4:243–254

    CAS  Google Scholar 

  • Ault-Riché D, Fraley CD, Tzeng C-M, Kornberg A (1998) Novel assay reveals multiple pathways regulating stress-induced accumulations of inorganic polyphosphate in Escherichia coli. J Bacteriol 180:1841–1847

    PubMed  PubMed Central  Google Scholar 

  • Aung K, Lin S-I, Wu C-C, Huang Y-T, Su C-l, Chiou T-J (2006) pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiol 141:1000–1011

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barlow DJ, van Rensburl WLJ, Pieterse AJH, Eloff JN (1979) Effect of phosphate concentration on the fine structure of the cyanobacterium, microcystisaeruginosa kütz. Emend. Elenkin, Journal of the Limnological Society of Southern Africa 5(2):79–83

    CAS  Google Scholar 

  • Bart J et al (2009) A microfluidic high-resolution NMR flow probe. J Am Chem Soc 131:5014–5015

    CAS  PubMed  Google Scholar 

  • Baxter M, Jensen T (1980) Uptake of magnesium, strontium, barium, and manganese by Plectonema boryanum (Cyanophyceae) with special reference to polyphosphate bodies. Protoplasma 104:81–89

    CAS  Google Scholar 

  • Beck WS, Hall EK (2018) Confounding factors in algal phosphorus limitation experiments. PLoS One 13:e0205684

    PubMed  PubMed Central  Google Scholar 

  • Bennett E, Elser J (2011) A broken biogeochemical cycle. Nature 478:29–31

    PubMed  Google Scholar 

  • Blank LM (2012) The cell and P: from cellular function to biotechnological application. Curr Opin Biotechnol 23:846–851

    CAS  PubMed  Google Scholar 

  • Brown N, Shilton A (2014) Luxury uptake of phosphorus by microalgae in waste stabilisation ponds: current understanding and future direction. Rev Environ Sci Biotechnol 13:321–328

    CAS  Google Scholar 

  • Cai T, Park SY, Li Y (2013) Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sust Energ Rev 19:360–369

    CAS  Google Scholar 

  • Carpenter S, Bennett E (2011) Reconsideration of the planetary boundary for phosphorus. Environ Res Lett 6:014009

    Google Scholar 

  • Carpenter S (2005) Eutrophication of aquatic ecosystems: bistability and soil phosphorus. Proc Nat Acad Sci 102:10002–10005

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cembella AD, Antia NJ, Harrison PJ (1982) The utilization of inorganic and organic phosphorous compounds as nutrients by eukaryotic microalgae: a multidisciplinary perspective: part 1. Crit Rev Microbiol 10:317–391

    Google Scholar 

  • Cembella AD, Antia NJ, Harrison PJ, Rhee G-Y (1984) The utilization of inorganic and organic phosphorous compounds as nutrients by eukaryotic microalgae: a multidisciplinary perspective: part 2. Crit Rev Microbiol 11:13–81

    CAS  PubMed  Google Scholar 

  • Chang C-W, Moseley JL, Wykoff D, Grossman ARJP (2005) The LPB1 gene is important for acclimation of Chlamydomonas reinhardtii to phosphorus and sulfur deprivation. Plant Physiol 138:319–329

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chi Z, Zheng Y, Jiang A, Chen S (2011) Lipid production by culturing oleaginous yeast and algae with food waste and municipal wastewater in an integrated process. Appl Biochem Biotechnol 165:442–453

    CAS  PubMed  Google Scholar 

  • Chinnasamy S, Bhatnagar A, Hunt RW, Das K (2010) Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol 101:3097–3105

    CAS  PubMed  Google Scholar 

  • Chisholm S, Stross RG (1976) Phosphate uptake kinetics in Euglena gracilis (Euglenophyceae) grown on light/dark cycles. I. Synchronized batch cultures. J Phycol 12:210–217

    CAS  Google Scholar 

  • Cohen NR et al (2018) Iron storage capacities and associated ferritin gene expression among marine diatoms. Limnol Oceanogr 63:1677–1691

    CAS  Google Scholar 

  • Conley DJ, Paerl HW, Howarth RW, Boesch DF, Seitzinger SP, Havens KE, Lancelot C, Likens GE (2009) Controlling eutrophication: nitrogen and phosphorus. Science 323:1014–1015

    CAS  PubMed  Google Scholar 

  • Cordell D, Drangert J-O, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Chang 19:292–305

    Google Scholar 

  • Cordell D, Rosemarin A, Schroder JJ, Smit AL (2011) Towards global phosphorus security: a systems framework for phosphorus recovery and reuse options. Chemosphere 84:747–758

    CAS  PubMed  Google Scholar 

  • Cordell D, White S (2014) Life’s bottleneck: implications of global phosphorus scarcity and pathways for a sustainable food system. Annu Rev Environ Resour 39:161–188

    Google Scholar 

  • Correll DL (1998) The role of phosphorus in the eutrophication of receiving waters: a review. J Environ Qual 27:261–266

    CAS  Google Scholar 

  • Craggs R, McAuley P, Smith V (1997) Wastewater nutrient removal by marine microalgae grown on a corrugated raceway. Water Res 31:1701–1707

    CAS  Google Scholar 

  • Craggs RJ, Adey WH, Jenson KR, St John MS, Bailey Green F, Oswald WJ (1996) Phosphorus removal from wastewater using an algal turf scrubber. Water Sci Technol 33:191–198

    CAS  Google Scholar 

  • de-Bashan LE, Bashan Y (2004) Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003). Water Res 38:4222–4246

    CAS  PubMed  Google Scholar 

  • de Mazancourt C, Schwartz MW (2012) Starve a competitor: evolution of luxury consumption as a competitive strategy. Theoret Ecol 5:37–49

    Google Scholar 

  • Daneshgar S, Callegari A, Capodaglio A, Vaccari D (2018) The potential phosphorus crisis: resource conservation and possible escape technologies: a review resources 7. https://doi.org/10.3390/resources7020037

    Google Scholar 

  • Desfougères Y, Gerasimaitė R, Jessen HJ, Mayer AJ (2016) Vtc5, a novel subunit of the vacuolar transporter chaperone complex, regulates polyphosphate synthesis and phosphate homeostasis in yeast. J Biochem 291:22262–22275

    Google Scholar 

  • Desmidt E, Ghyselbrecht K, Zhang Y, Pinoy L, Van der Bruggen B, Verstraete W, Rabaey K, Meesschaert B (2015) Global phosphorus scarcity and full-scale P-recovery techniques: a review. Crit Rev Environ Sci Technol 45:336–384

    CAS  Google Scholar 

  • Dignum M, Matthijs HC, Pel R, Laanbroek HJ, Mur LR (2005) Nutrient limitation of freshwater cyanobacteria. In: Huisman J, Matthijs HC, Visser PM (eds) Harmful cyanobacteria. Aquatic Ecology Series, vol 3. Springer, Dordrecht

  • Donald KM, Scanlan DJ, Carr NG, Mann NH, Joint I (1997) Comparative phosphorus nutrition of the marine cyanobacterium Synechococcus WH7803 and the marine diatom Thalassiosira weissflogii. J Plankton Res 19:1793–1813

    CAS  Google Scholar 

  • Dresselhaus M, Thomas I (2001) Alternative energy technologies. Nature 414:332–337

    CAS  PubMed  Google Scholar 

  • Dyhrman S, Chappell P, Haley S, Moffett J, Orchard E, Waterbury J, Webb E (2006a) Phosphonate utilization by the globally important marine diazotroph Trichodesmium. Nature 439:68–71

    CAS  PubMed  Google Scholar 

  • Dyhrman ST (2016) Nutrients and their acquisition: phosphorus physiology in microalgae. In: Borowitzka MA, Beardall J, Raven J (eds) The physiology of microalgae. Springer, Cham, pp 155–183

    Google Scholar 

  • Dyhrman ST, Haley ST, Birkeland SR, Wurch LL, Cipriano MJ, McArthur AG (2006b) Long serial analysis of gene expression for gene discovery and transcriptome profiling in the widespread marine coccolithophore Emiliania huxleyi. Appl Environ Microbiol 72:252–260

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dyhrman ST, Jenkins BD, Rynearson TA, Saito MA, Mercier ML, Alexander H, Whitney LP, Drzewianowski A, Bulygin VV, Bertrand EM, Wu Z, Benitez-Nelson C, Heithoff A (2012) The transcriptome and proteome of the diatom Thalassiosira pseudonana reveal a diverse phosphorus stress response. PLoS One 7:e33768

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ebel J, Colas J, Muller S (1958) Recherches cytochimiques sur les polyphosphates inorganiques contenus dans les organismes vivants: II Mise au point de méthodes de détection cytochimiques spécifiques des polyphosphates. Exp Cell Res 15:28–36

    CAS  PubMed  Google Scholar 

  • Eichler-Löbermann B, Baum C, Ruppel S, Schnug E (2017) Phosphorus: plant nutrition and microorganism contribution. In: Encyclopedia of soil science (pp. 1708–1711). CRC Press

  • Eixler S, Karsten U, Selig U (2006) Phosphorus storage in Chlorella vulgaris (Trebouxiophyceae, Chlorophyta) cells and its dependence on phosphate supply. Phycologia 45:51–60

    Google Scholar 

  • Elser JJ (2012) Phosphorus: a limiting nutrient for humanity? Curr Opin Biotechnol 23:833–838

    CAS  PubMed  Google Scholar 

  • Fixen PE, Johnston AM (2012) World fertilizer nutrient reserves: a view to the future. J Sci Food Agric 92:1001–1005

    CAS  PubMed  Google Scholar 

  • Garcia-Gonzalez J, Sommerfeld M (2016) Biofertilizer and biostimulant properties of the microalga Acutodesmus dimorphus. J Appl Phycol 28:1051–1061

    PubMed  Google Scholar 

  • Gerasimaitė R, Mayer A (2016) Enzymes of yeast polyphosphate metabolism: structure, enzymology and biological roles. Biochem Soc Trans 44:234–239

    PubMed  Google Scholar 

  • Gerasimaite R, Sharma S, Desfougeres Y, Schmidt A, Mayer A (2014) Coupled synthesis and translocation restrains polyphosphate to acidocalcisome-like vacuoles and prevents its toxicity. J Cell Sci 127:5093–5104

    PubMed  Google Scholar 

  • Ginzburg M, Ratcliffe R, Southon T (1988) Phosphorus metabolism and intracellular pH in the halotolerant alga Dunaliella parva studied by 31P-NMR. Biochim Biophys Acta, Mol Cell Res 969:225–235

    CAS  Google Scholar 

  • Gobler CJ, Berry DL, Dyhrmann ST et al (2011) Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics. Proc Natl Acad Sci 108:4352–4357

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg J, Gonzalez H, Jensen TE, Corpe W (2001) Quantitative analysis of the elemental composition and the mass of bacterial polyphosphate bodies using STEM EDX. Microbios 106:177–188

    CAS  PubMed  Google Scholar 

  • Gomes FM, Ramos IB, Wendt C, Girard-Dias W, De Souza W, Machado EA, Miranda K (2013) New insights into the in situ microscopic visualization and quantification of inorganic polyphosphate stores by 4′,6-diamidino-2-phenylindole (DAPI)-staining. Eur J Histochem 57:e34

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez-Garcı́a MR, Losada M, Serrano AJB (2003) Concurrent transcriptional activation of ppa and ppx genes by phosphate deprivation in the cyanobacterium Synechocystis sp. strain PCC 6803. Biochem Biophys Res Commun 302:601–609

    PubMed  Google Scholar 

  • Gomez-Garcia MR, Fazeli F, Grote A, Grossman AR, Bhaya D (2013) Role of polyphosphate in thermophilic Synechococcus sp. from microbial mats. J Bacteriol 195:3309–3319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grillo JF, Gibson J (1979) Regulation of phosphate accumulation in the unicellular cyanobacterium Synechococcus. J Bacteriol 140:508–517

  • Grobbelaar JU (2004) Algal nutrition: mineral nutrition. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Publishing, Oxford, pp 97–115

    Google Scholar 

  • Grobbelaar JU (2013) Inorganic algal nutrition. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology, 2nd edn. Wiley, Chichester, pp 123–133

    Google Scholar 

  • Grossman A, Takahashi H (2001) Macronutrient utilization by photosynthetic eukaryotes and the fabric of interactions. Annu Rev Plant Biol 52:163–210

    CAS  Google Scholar 

  • Grossman AR, Aksoy M (2015) Algae in a phosphorus-limited landscape. In: Plaxton W, Lambers H (eds) Phosphorus metabolism in plants. Wiley-Blackwell, London, pp 337–374

    Google Scholar 

  • Haneklaus S, Bloem H, Schnug E (2018) Hungry plants—a short treatise on how to feed crops under stress. Agriculture 8(3):43. https://www.mdpi.com/2077-0472/8/3/43

  • Hase E, Miyachi S, Mihara S (1963) A preliminary note on the phosphorus compounds in chloroplasts and volutin granules isolated from Chlorella cells. In: Studies on microalgae and photosynthetic bacteria. Japanese Society of Plant Physiologists, Tokyo, pp 619–626

    Google Scholar 

  • Heinonen JK, Lahti R (1981) A new and convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphatase. Anal Biochem 113:313–317

    CAS  PubMed  Google Scholar 

  • Hernandez JP, de-Bashan LE, Bashan Y (2006) Starvation enhances phosphorus removal from wastewater by the microalga Chlorella spp. co-immobilized with Azospirillum brasilense. Enzym Microb Technol 38:190–198

    CAS  Google Scholar 

  • Hoiczyk E, Hansel A (2000) Cyanobacterial cell walls: news from an unusual prokaryotic envelope. J Bacteriol 182:1191–1199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hothorn M, Neumann H, Lenherr ED, Wehner M, Rybin V, Hassa PO, Uttenweiler A, Reinhardt M, Schmidt A, Seiler J, Ladurner AG, Herrmann C, Scheffzek K, Mayer A (2009) Catalytic core of a membrane-associated eukaryotic polyphosphate polymerase. Science 324:513–516

    CAS  PubMed  Google Scholar 

  • Hupfer M, Glöss S, Schmieder P, Grossart H (2008) Methods for detection and quantification of polyphosphate and polyphosphate accumulating microorganisms in aquatic sediments. Int Rev Hydrobiol 93:1–30

    CAS  Google Scholar 

  • Hupfer M, Gtichter R, Ruegger RR (1995) Polyphosphate in lake sediments: 31P NMR spectroscopy as a tool for its identification. Limnol Oceanogr 40:610–617

    Google Scholar 

  • Ismagulova T, Shebanova A, Gorelova O, Baulina O, Solovchenko A (2018) A new simple method for quantification and locating P and N reserves in microalgal cells based on energy-filtered transmission electron microscopy (EFTEM) elemental maps. PLoS One 13:e0208830

    PubMed  PubMed Central  Google Scholar 

  • Jacobson L, Halmann M (1982) Polyphosphate metabolism in the blue-green alga Microcystis aeruginosa. J Plankton Res 4:481–488

    CAS  Google Scholar 

  • Jansson M (1993) Uptake, exchange and excretion of orthophosphate in phosphate-starved Scenedesmus quadricauda and Pseudomonas K7. Limnol Oceanogr 38:1162–1178

    CAS  Google Scholar 

  • Jensen TE, Baxter M, Rachlin JW, Jani V (1982a) Uptake of heavy metals by Plectonema boryanum (Cyanophyceae) into cellular components, especially polyphosphate bodies: an X-ray energy dispersive study. Environ Pollut Series A 27:119–127

    CAS  Google Scholar 

  • Jensen TE, Rachlin JW, Jani V, Warkentine BJE, Botany E (1982b) An X-ray energy dispersive study of cellular compartmentalization of lead and zinc in Chlorella saccharophila (Chlorophyta), Navicula incerta and Nitzschia closterium (Bacillariophyta). Environ Exp Bot 22:319–328

    CAS  Google Scholar 

  • Jensen TE, Sicko LM (1974) Phosphate metabolism in blue-green algae. I. Fine structure of the “polyphosphate overplus” phenomenon in Plectonema boryanum. Can J Microbiol 20:1235–1239

    CAS  PubMed  Google Scholar 

  • Kebede-Westhead E, Pizarro C, Mulbry WW (2006) Treatment of swine manure effluent using freshwater algae: production, nutrient recovery, and elemental composition of algal biomass at four effluent loading rates. J Appl Phycol 18:41–46

    Google Scholar 

  • Ketchum BH (1939) The absorption of phosphate and nitrate by illuminated cultures of Nitzschia closterium. Am J Bot 26(6):399–407

    CAS  Google Scholar 

  • Kobayashi I, Fujiwara S, Shimogawara K, Kaise T, Usuda H, Tsuzuki M (2003) Insertional mutagenesis in a homologue of a Pi transporter gene confers arsenate resistance on Chlamydomonas. Plant Cell Physiol 44:597–606

    CAS  PubMed  Google Scholar 

  • Krumhardt KM, Callnan K, Roache-Johnson K, Swett T, Robinson D, Reistetter EN, Saunders JK, Rocap G, Moore LR (2013) Effects of phosphorus starvation versus limitation on the marine cyanobacterium Prochlorococcus MED4 I: uptake physiology. Environ Microbiol 15:2114–2128

    CAS  PubMed  Google Scholar 

  • Krumova SB, Dijkema C, de Waard P, Van AH, Garab G, van Amerongen H (2008) Phase behavior of phosphatidylglycerol in spinach thylakoid membranes as revealed by 31P-NMR. Biochim Biophys Acta Biomembr 1778:997–1003

    CAS  Google Scholar 

  • Kuhl A (1974) Phosphorus. In: Stewart W (ed) Algal physiology and biochemistry. Blackwell Scientific, Oxford, pp 636–654

    Google Scholar 

  • Kulaev I, Vagabov I, Kulakovskaya T (2004) The biochemistry of inorganic polyphosphates, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Kulakova AN, Hobbs D, Smithen M, Pavlov E, Gilbert JA, Quinn JP, McGrath JW (2011) Direct quantification of inorganic polyphosphate in microbial cells using 4′-6-diamidino-2-phenylindole (DAPI). Environ Sci Technol 45:7799–7803

    CAS  PubMed  Google Scholar 

  • Lampe RH, Mann EL, Cohen NR, Till CP, Thamatrakoln K, Brzezinski MA, Bruland KW, Twining BS, Marchetti A (2018) Different iron storage strategies among bloom-forming diatoms. Proc Natl Acad Sci 115:E12275–E12284

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lan P, Li W, Schmidt W (2015) ‘Omics’ approaches towards understanding plant phosphorus acquisition and use. In: Plaxton WC, Lambers H (eds) Phosphorus metabolism in plants. John Wiley & Sons, London, pp 65–97

  • Lanzetta PA, Alvarez LJ, Reinach PS, Candia O (1979) An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem 100:95–97

    CAS  PubMed  Google Scholar 

  • Li Q, Fu L, Wang Y, Zhou D, Rittmann BE (2018) Excessive phosphorus caused inhibition and cell damage during heterotrophic growth of Chlorella regularis. Bioresour Technol 268:266–270

    CAS  PubMed  Google Scholar 

  • Livingstone D, Whitton B (1983) Influence of phosphorus on morphology of Calothrix parietina (Cyanophyta) in culture. Brit Phycol J 18:29–38

    Google Scholar 

  • Lorenz B, Schröder H (1999) Methods for investigation of inorganic polyphosphates and polyphosphate-metabolizing enzymes. In: Schröder HC, Müller WEG (eds) Inorganic Polyphosphates. Springer, Berlin, pp 217–239

    Google Scholar 

  • Majed N, Li Y, Gu AZ (2012) Advances in techniques for phosphorus analysis in biological sources. Curr Opin Biotechnol 23:852–859

    CAS  PubMed  Google Scholar 

  • Markou G, Georgakakis D (2011) Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: a review. J Appl Energy 88:3389–3401

    CAS  Google Scholar 

  • Martín HG, Ivanova N, Kunin V et al (2006) Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities. Nat Biotechnol 24:1263–1269

    Google Scholar 

  • Martin P, Dyhrman ST, Lomas MW, Poulton NJ, Van Mooy BA (2014) Accumulation and enhanced cycling of polyphosphate by Sargasso Sea plankton in response to low phosphorus. Proc Natl Acad Sci 111:8089–8094

    CAS  PubMed  PubMed Central  Google Scholar 

  • McGrath JW, Quinn JP (2003) Microbial phosphate removal and polyphosphate production from wastewaters. Adv Appl Microbiol 52:75–100

    CAS  PubMed  Google Scholar 

  • Meyer A (1904) Orientierende Untersuchungen ueber Verbreitung, Morphologie, und Chemie des Volutins. Bot Zeit 62:113–152

    Google Scholar 

  • Mino T, van Loosdrecht M, Heijnen J (1998) Microbiology and biochemistry of the enhanced biological phosphate removal process. Water Res 32:3193–3207

    CAS  Google Scholar 

  • Miyachi S, Kanai R, Mihara S, Miyachi S, Aoki S (1964) Metabolic roles of inorganic polyphosphates in Chlorella cells. Biochim Biophys Acta 93:625–634

    CAS  PubMed  Google Scholar 

  • Miyachi S, Miyachi S (1961) Modes of formation of phosphate compounds and their turnover in Chlorella cells during the process of life cycle as studied by the technique of synchronous culture. Plant Cell Physiol 2:415–424

    CAS  Google Scholar 

  • Miyachi S, Tamiya H (1961a) Distribution and turnover of phosphate compounds in growing Chlorella cells. Plant Cell Physiol 2:405–414

    CAS  Google Scholar 

  • Miyachi S, Tamiya H (1961b) Some observations on the phosphorus metabolism in growing Chlorella cells. Biochim Biophys Acta 46:200–202

    CAS  PubMed  Google Scholar 

  • Morohoshi T, Maruo T, Shirai Y, Kato J, Ikeda T, Takiguchi N, Ohtake H, Kuroda A (2002) Accumulation of inorganic polyphosphate in phoU mutants of Escherichia coli and Synechocystis sp. strain PCC6803. Appl Environ Microbiol 68:4107–4110

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moseley JL, Chang C-W, Grossman AR (2006) Genome-based approaches to understanding phosphorus deprivation responses and PSR1 control in Chlamydomonas reinhardtii. Eukaryot Cell 5:26–44

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moudříková Š, Sadowsky A, Metzger S, Nedbal L, Mettler-Altmann T, Mojzes P (2017) Quantification of polyphosphate in microalgae by Raman microscopy and by a reference enzymatic assay. Anal Chem 89:12006–12013

    PubMed  Google Scholar 

  • Mulbry W, Kondrad S, Buyer J (2008) Treatment of dairy and swine manure effluents using freshwater algae: fatty acid content and composition of algal biomass at different manure loading rates. J Appl Phycol 20:1079–1085

    Google Scholar 

  • Mulbry W, Kondrad S, Buyer J, Luthria DL (2009) Optimization of an oil extraction process for algae from the treatment of manure effluent. J Am Oil Chem Soc 86:909–915

    CAS  Google Scholar 

  • Mulbry W, Westhead EK, Pizarro C, Sikora L (2005) Recycling of manure nutrients: use of algal biomass from dairy manure treatment as a slow release fertilizer. Bioresour Technol 96:451–458

    CAS  PubMed  Google Scholar 

  • Müller O, Bayer MJ, Peters C, Andersen JS, Mann M, Mayer AJTEJ (2002) The Vtc proteins in vacuole fusion: coupling NSF activity to V0 trans-complex formation. EMBO J 21:259–269

    PubMed  PubMed Central  Google Scholar 

  • Müller O, Neumann H, Bayer MJ, Mayer A (2003) Role of the Vtc proteins in V-ATPase stability and membrane trafficking. J Cell Sci 116:1107–1115

    PubMed  Google Scholar 

  • Nishikawa K, Machida H, Yamakoshi Y, Ohtomo R, Saito K, Saito M, Tominaga N (2006) Polyphosphate metabolism in an acidophilic alga Chlamydomonas acidophila KT-1 (Chlorophyta) under phosphate stress. Plant Sci 170:307–313

    CAS  Google Scholar 

  • Nishikawa K, Yamakoshi Y, Uemura I, Tominaga NJFME (2003) Ultrastructural changes in Chlamydomonas acidophila (Chlorophyta) induced by heavy metals and polyphosphate metabolism. FEMS Microbiol Ecol 44:253–259

    CAS  PubMed  Google Scholar 

  • Ota S, Yoshihara M, Yamazaki T, Takeshita T, Hirata A, Konomi M, Oshima K, Hattori M, Bišová K, Zachleder V, Kawano S (2016) Deciphering the relationship among phosphate dynamics, electron-dense body and lipid accumulation in the green alga Parachlorella kessleri. Sci Rep 6:25731

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pahlow M, Oschlies A (2013) Optimal allocation backs Droop’s cell-quota model. Mar Ecol Prog Ser 473:1–5

    CAS  Google Scholar 

  • Papineau D (2010) Global biogeochemical changes at both ends of the Proterozoic: insights from phosphorites Astrobiology 10:165–181

    CAS  PubMed  Google Scholar 

  • Parmar A, Singh NK, Pandey A, Gnansounou E, Madamwar D (2011) Cyanobacteria and microalgae: a positive prospect for biofuels. Bioresour Technol 102:10163–10172

    CAS  PubMed  Google Scholar 

  • Pettersson A, Kunst L, Bergman B, Roomans GM (1985) Accumulation of aluminium by Anabaena cylindrica into polyphosphate granules and cell walls: an X-ray energy-dispersive microanalysis study. Microbiology 131:2545–2548

    CAS  Google Scholar 

  • Pitt FD, Mazard S, Humphreys L, Scanlan DJ (2010) Functional characterization of Synechocystis sp. strain PCC 6803 pst1 and pst2 gene clusters reveals a novel strategy for phosphate uptake in a freshwater cyanobacterium. J Bacteriol 192:3512–3523

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102:17–25

    CAS  PubMed  Google Scholar 

  • Powell N, Shilton A, Chisti Y, Pratt S (2009) Towards a luxury uptake process via microalgae—defining the polyphosphate dynamics. Water Res 43:4207–4213

    CAS  PubMed  Google Scholar 

  • Powell N, Shilton A, Pratt S, Chisti Y (2011a) Luxury uptake of phosphorus by microalgae in full-scale waste stabilisation ponds. Water Sci Technol 63:704–709

    CAS  PubMed  Google Scholar 

  • Powell N, Shilton A, Pratt S, Chisti Y (2011b) Phosphate release from waste stabilisation pond sludge: significance and fate of polyphosphate. Water Sci Technol 63:1689

    CAS  PubMed  Google Scholar 

  • Powell N, Shilton AN, Pratt S, Chisti Y (2008) Factors influencing luxury uptake of phosphorus by microalgae in waste stabilization ponds. Environ Sci Technol 42:5958–5962

    CAS  PubMed  Google Scholar 

  • Ray K, Mukherjee C, Ghosh AN (2013) A way to curb phosphorus toxicity in the environment: use of polyphosphate reservoir of cyanobacteria and microalga as a safe alternative phosphorus biofertilizer for Indian agriculture. Environ Sci Technol 47:11378–11379

    CAS  PubMed  Google Scholar 

  • Raven JA, Knoll AH (2010) Non-skeletal biomineralization by eukaryotes: matters of moment and gravity. Geomicrobiol J 27:572–584

    CAS  Google Scholar 

  • Read BA, Kegel J, Klute MJ et al (2013) Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature 499:209–213

    CAS  PubMed  Google Scholar 

  • Reistetter EN, Krumhardt K, Callnan K, Roache-Johnson K, Saunders JK, Moore LR, Rocap GJ (2013) Effects of phosphorus starvation versus limitation on the marine cyanobacterium Prochlorococcus MED4 II: gene expression. Environ Microbiol 15:2129–2143

    CAS  PubMed  Google Scholar 

  • Reusch R (2000) Transmembrane ion transport by polyphosphate/poly-(R)-3-hydroxybutyrate complexes. Biochemistry 65:280–295

    CAS  PubMed  Google Scholar 

  • Rhee G-Y (1973) A continuous culture study of phosphate uptake, growth rate and polyphosphate in Scenedesmus sp. J Phycol 9:495–506

    CAS  Google Scholar 

  • Ruiz-Marin A, Mendoza-Espinosa LG, Stephenson T (2010) Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresour Technol 101:58–64

    CAS  PubMed  Google Scholar 

  • Ruiz FA, Marchesini N, Seufferheld M, Govindjee, Docampo R (2001) The polyphosphate bodies of Chlamydomonas reinhardtii possess a proton-pumping pyrophosphatase and are similar to acidocalcisomes. J Biol Chem 276:46196–46203 0

    CAS  PubMed  Google Scholar 

  • Scanlan DJ, Ostrowski M, Mazard S, Dufresne A, Garczarek L, Hess WR, Post AF, Hagemann M, Paulsen I, Partensky F (2009) Ecological genomics of marine picocyanobacteria. Microbiol Mol Biol Rev 73:249–299

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schreiber C, Schiedung H, Harrison L, Briese C, Ackermann B, Kant J, Schrey SD, Hofmann D, Singh D, Ebenhöh O, Amelung W, Schurr U, Mettler-Altmann T, Huber G, Jablonowski ND, Nedbal L (2018) Evaluating potential of green alga Chlorella vulgaris to accumulate phosphorus and to fertilize nutrient-poor soil substrates for crop plants. J Appl Phycol 30:2827–2836

    CAS  Google Scholar 

  • Shebanova A, Ismagulova T, Solovchenko A, Baulina O, Lobakova E, Ivanova A, Moiseenko A, Shaitan K, Polshakov V, Nedbal L, Gorelova O (2017) Versatility of the green microalga cell vacuole function as revealed by analytical transmission electron microscopy. Protoplasma 254:1323–1340

    CAS  PubMed  Google Scholar 

  • Singh JS, Kumar A, Rai AN, Singh DP (2016) Cyanobacteria: a precious bio-resource in agriculture, ecosystem, and environmental sustainability. Front Microbiol 7:529

    PubMed  PubMed Central  Google Scholar 

  • Smil V (2000) Phosphorus in the environment: natural flows and human interferences. Annu Rev Energy Environ 25:53–88

    Google Scholar 

  • Solovchenko A, Verschoor AM, Jablonowski ND, Nedbal L (2016) Phosphorus from wastewater to crops: an alternative path involving microalgae. Biotechnol Adv 34:550–564

    CAS  PubMed  Google Scholar 

  • Su Y, Mennerich A, BJWr U (2011) Municipal wastewater treatment and biomass accumulation with a wastewater-born and settleable algal-bacterial culture. Water Res 45:3351–3358

    CAS  PubMed  Google Scholar 

  • Suzuki S, Ferjani A, Suzuki I, Murata N (2004) The SphS-SphR two component system is the exclusive sensor for the induction of gene expression in response to phosphate limitation in Synechocystis. J Biol Chem 279:13234–13240

    CAS  PubMed  Google Scholar 

  • Tarayre C, De Clercq L, Charlier R, Michels E, Meers E, Camargo-Valero M, Delvigne F (2016) New perspectives for the design of sustainable bioprocesses for phosphorus recovery from waste. Bioresour Technol 206:264–274

    CAS  PubMed  Google Scholar 

  • Tillberg JE, Barnard T, Rowley J (1979) X-ray microanalysis of phosphorus in Scenedesmus obtusiusculus. Physiol Plant 47:34–38

    CAS  Google Scholar 

  • Tillberg JE, Barnard T, Rowley JR (1984) Phosphorus status and cytoplasmic structures in Scenedesmus (Chlorophyceae) under different metabolic regimes. J Phycol 20:124–136

    CAS  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky SJN (2002) Agricultural sustainability and intensive production practices. Nature 418:671

    CAS  PubMed  Google Scholar 

  • Voříšek J, Zachleder V (1984) Redistribution of phosphate deposits in the alga Scenedesmus quadricauda deprived of exogenous phosphate—an ultra-cytochemical study. Protoplasma 119:168–177

    Google Scholar 

  • Voronkov A, Sinetova M (2019) Protoplasma. https://doi.org/10.1007/s00709-019-01374-2 (this is Online First)

    CAS  PubMed  Google Scholar 

  • Warley A (2016) Development and comparison of the methods for quantitative electron probe X-ray microanalysis analysis of thin specimens and their application to biological material. J Microsc 261:177–184

    CAS  PubMed  Google Scholar 

  • Watanabe M, Kohata K, Kunugi M (1988) Phosphate accumulation and metabolism by Heterosigma akashiwo (Raphidophyceae) during diel vertical migration in a stratified microcosm. J Phycol 24:22–28

    CAS  Google Scholar 

  • Whitehead MP, Hooley P, Brown MR (2013) Horizontal transfer of bacterial polyphosphate kinases to eukaryotes: implications for the ice age and land colonisation. BMC Res Notes 6:221–232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilfert P, Kumar PS, Korving L, Witkamp GJ, van Loosdrecht MC (2015) The relevance of phosphorus and iron chemistry to the recovery of phosphorus from wastewater: a review. Environ Sci Technol 49(16):9400–9414

    CAS  Google Scholar 

  • Wördenweber R, Rokitta SD, Heidenreich E, Corona K, Kirschofer F, Fahl K, Locke JL, KottkeT, Brenner-Weiuss G, Rost B, Mussgnug JH, Kruse O (2017) Phosphorus and nitrogen starvation reveal life-cycle specific responses in the metabolome of Emiliania huxleyi (Haptophyta). Limnol Oceanogr 63:203–226

    Google Scholar 

  • Xie L, Jakob U (2019) Inorganic polyphosphate, a multifunctional polyanionic protein scaffold. J Biol Chem 294:2180–2190

    CAS  PubMed  Google Scholar 

  • Yadavalli R, Heggers GR (2013) Two stage treatment of dairy effluent using immobilized Chlorella pyrenoidosa. J Environ Health Sci Eng 11:36–42

    PubMed  PubMed Central  Google Scholar 

  • Yagisawa F, Kuroiwa H, Fujiwara T, Kuroiwa T (2016) Intracellular structure of the unicellular red alga Cyanidioschyzon merolae in response to phosphate depletion and resupplementation. Cytologia 81:341–347

    CAS  Google Scholar 

  • Yang F, Xiang W, Li T, Long L (2018) Transcriptome analysis for phosphorus starvation-induced lipid accumulation in Scenedesmus sp. Nat Sci Rep 8:16420

    Google Scholar 

  • Zhang E, Wang B, Wang Q, Zhang S, Zhao B (2008) Ammonia–nitrogen and orthophosphate removal by immobilized Scenedesmus sp. isolated from municipal wastewater for potential use in tertiary treatment. Bioresour Technol 99:3787–3793

    CAS  PubMed  Google Scholar 

  • Zhang H, Ishige K, Kornberg A (2002) A polyphosphate kinase (PPK2) widely conserved in bacteria. Proc Natl Acad Sci 99:16678–16683

    CAS  PubMed  PubMed Central  Google Scholar 

  • Živić M, Zakrzewska J, Žižić M, Bačić G (2007) 31P NMR study of polyphosphate levels during different growth phases of Phycomyces blakesleeanus. Antonie Van Leeuwenhoek 91:169–177

    PubMed  Google Scholar 

  • Zubkov MV, Martin AP, Hartmann M, Grob C, Scanlan DJ (2015) Dominant oceanic bacteria secure phosphate using a large extracellular buffer. Nat Commun 6:7878

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support by the Russian Ministry of Science and Higher Education (project 14.616.21.0081/RFMEFI61617X0080) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei E. Solovchenko.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solovchenko, A.E., Ismagulova, T.T., Lukyanov, A.A. et al. Luxury phosphorus uptake in microalgae. J Appl Phycol 31, 2755–2770 (2019). https://doi.org/10.1007/s10811-019-01831-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-019-01831-8

Keywords

Profiles

  1. Alexei E. Solovchenko