Advertisement

Culture of the seaweed Ulva ohnoi integrated in a Solea senegalensis recirculating system: influence of light and biomass stocking density on macroalgae productivity

  • Joan OcaEmail author
  • Javier Cremades
  • Patricia Jiménez
  • José Pintado
  • Ingrid Masaló
Article

Abstract

A growth model was developed to optimize the management of multi-trophic aquaculture systems by analyzing the influence of light and biomass stocking density (SD) in the productivity of Ulva ohnoi fed with the effluents from Solea senegalensis culture tanks. Growth rates and productivity were determined in three flat bottom algae tanks with different incident photon irradiances (E0) (163, 280, and 886 μmol photons m−2 s−1), photoperiod 12:12 h, and with stocking densities ranging from 82 to 340 gdw m−2. The distribution of photon irradiance in the algae tanks was estimated as a function of the E0 and SD. The results obtained showed that the algae exposed to the highest E0 (886 μmol photons m−2 s−1) and SD below 170 gdw m−2 showed a strong decrease in their growth rate, together with morphological changes. The model proposed to estimate the specific growth rate (μNET), on the basis of E0 and SD, assumed that photosynthetic activity is dependent on the local photon flux density and, therefore, spatially distributed in the tank. Non-linear regression used to estimate the growth kinetic parameters showed a standard deviation of the distance between measured and fitted μNET data values equal to 0.011 day−1. In terms of biomass productivity per unit area (BPA), the model shows, for each E0 level, a trend to increase with SD, achieving a maximum BPA, where SD can be considered optimal, and decreasing for higher SD values. The optimal SD and the maximum BPA achievable can be also determined as a function of E0.

Keywords

Ulva ohnoi IMTA Growth model Productivity Irradiance Biomass stocking density 

Notes

Funding information

This work was funded by the Spanish Ministerio de Economia y Competitividad (AGL2013-41868-R).

References

  1. Angell AR, Mata L, de Nys R, Paul NA (2014) Variation in amino acid content and its relationship to nitrogen content and growth rate in Ulva ohnoi (Chlorophyta). J Phycol 50:216–226CrossRefPubMedGoogle Scholar
  2. APHA (1992) Standard methods for the examination of water and wastewater, 18th edn. American Public Health Association (APHA), American Water Works Association (AWWA) and Water Pollution Control Federation (WPCF), Washington DCGoogle Scholar
  3. Aveytua-Alcázar L, Camacho-Ibar VF, Souza AJ, Allen JI, Torres R (2008) Modelling Zostera marina and Ulva spp. in a coastal lagoon. Ecol Model 218:354–366CrossRefGoogle Scholar
  4. Béchet Q, Shilton A, Guieysse B (2013) Modeling the effects of light and temperature on algae growth: state of the art and critical assessment for productivity prediction during outdoor cultivation. Biotechnol Adv 31:1648–1663CrossRefPubMedGoogle Scholar
  5. Bendoricchio G, Coffaro G, Demarchi C (1994) A trophic model for Ulva rigida in the lagoon of Venice. Ecol Model 75:485–496CrossRefGoogle Scholar
  6. Bidwell RGS, McLachlan J, Lloyd NDH (1985) Tank cultivation of Irish moss, Chondrus crispus Stackh. Bot Mar 28:87–97Google Scholar
  7. Bolton JJ, Robertson-Andersson DV, Shuuluka D, Kandjengo L (2009) Growing Ulva (Chlorophyta) in integrated systems as a commercial crop for abalone feed in South Africa: a Swot analysis. J Appl Phycol 21:575–583CrossRefGoogle Scholar
  8. Coffaro G, Sfriso A (1997) Simulation model of Ulva rigida growth in shallow water of the lagoon of Venice. Ecol Model 102:55–66CrossRefGoogle Scholar
  9. Cohen RA, Fong P (2004) Physiological responses of a bloom-forming green macroalga to short-term change in salinity, nutrients, and light help explain its ecological success. Estuaries 27:209–216CrossRefGoogle Scholar
  10. Coutinho R, Zingmark R (1993) Interactions of light and nitrogen on photosynthesis and growth of the marine macroalga Ulva curvata (Kützing) De Toni. J Exp Mar Biol Ecol 167:11–19CrossRefGoogle Scholar
  11. De Guimaraens MA, De MoraesPaiva A, Coutinho R (2005) Modeling Ulva spp. dynamics in a tropical upwelling region. Ecol Model 188:448–460CrossRefGoogle Scholar
  12. Duarte P, Ferreira JG (1993) A methodology for parameter estimation in seaweed productivity modelling. Hydrobiologia 260:183–189CrossRefGoogle Scholar
  13. Duarte S, Reig L, Oca J (2009) Measurement of sole activity by digital image analysis. Aquac Eng 41:22–27CrossRefGoogle Scholar
  14. Duke CS, Litaker W, Ramus J (1989) Effect of temperature on nitrogen-limited growth rate and chemical composition of Ulva curvata (Ulvales: Chlorophyta). Mar Biol 100:143–150CrossRefGoogle Scholar
  15. Evers EG (1991) A model for light-limited continuous cultures: growth, shading, and maintenance. Biotechnol Bioeng 38:245–259CrossRefGoogle Scholar
  16. Falkowski PG, LaRoche J (1991) Acclimation to spectral irradiance in algae. J Phycol 27:8–14CrossRefGoogle Scholar
  17. Figueroa FL, Israel A, Neori A, Martínez B, Malta E, Ang P, Inken S, Marquardt R, Korbee N (2009) Effects of nutrient supply on photosynthesis and pigmentation in Ulva lactuca (Chlorophyta): responses to short-term stress. Aquat Biol 7:173–183CrossRefGoogle Scholar
  18. Grasshoff K, Ehrhardt M, Kremling K (eds) (1999) Methods of seawater analysis, Third edn. Verlag Chemie, WeinheimGoogle Scholar
  19. Hadley S, Wild-Allen K, Johnson C, Macleod C (2015) Modeling macroalgae growth and nutrient dynamics for integrated multi-trophic aquaculture. J Appl Phycol 27:901–916CrossRefGoogle Scholar
  20. Hayden HS, Blomster J, Maggs CA, Silva PC, Stanhope MJ, Waaland JR (2003) Linnaeus was right all along: Ulva and Enteromorpha are not distinct genera. Eur J Phycol 38:277–294CrossRefGoogle Scholar
  21. Jiménez del Río M, Ramazanov Z, García-Reina G (1996) Ulva rigida (Ulvales, Chlorophyta) tank culture as biofilters for dissolved inorganic nitrogen from fishpond effluents. Hydrobiologia 326:61–66CrossRefGoogle Scholar
  22. Lahaye M, Robic A (2007) Structure and function properties of Ulvan, a polysaccharide from green seaweeds. Biomacromolecules 8:1765–1774CrossRefPubMedGoogle Scholar
  23. Lawton RJ, Mata L, de Nys R, Paul NA (2013) Algal bioremediation of waste waters from land-based aquaculture using Ulva: selecting target species and strains. PLoS One 8:e77344CrossRefPubMedPubMedCentralGoogle Scholar
  24. Lobban CS, Harrison PJ (1994) Seaweed ecology and physiology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  25. Manhart J (1994) Phylogenetic analysis of green plant rbcL sequences. Mol Phylogenet Evol 3:114–127CrossRefPubMedGoogle Scholar
  26. Martins I, Marques JC (2002) A model for the growth of opportunistic macroalgae (Enteromorpha sp.) in tidal estuaries. Estuar Coast Shelf S 55:247–257CrossRefGoogle Scholar
  27. Mata L, Schuenhoff A, Santos R (2010) A direct comparison of the performance of the seaweed biofilters, Asparagopsis armata and Ulva rigida. J Appl Phycol 22:639–644CrossRefGoogle Scholar
  28. Mata L, Magnusson M, Paul NA, de Nys R (2016) The intensive land-based production of the green seaweeds Derbesia tenuissima and Ulva ohnoi: biomass and bioproducts. J Appl Phycol 28:365–375CrossRefGoogle Scholar
  29. Menéndez M, Martı́nez M, Comı́n FA (2001) A comparative study of the effect of pH and inorganic carbon resources on the photosynthesis of three floating macroalgae species of a Mediterranean coastal lagoon. J Exp Mar Biol Ecol 256:123–136Google Scholar
  30. Molina Grima E, Fernández Sevilla JM, Sánchez Pérez JA, Garcia Camacho F (1996) A study on simultaneous photolimitation and photoinhibition in dense microalgal cultures taking into account incident and averaged irradiances. J Biotechnol 45:59–69Google Scholar
  31. Morais S, Aragão C, Cabrita E, Conceição LEC, Constenla M, Costas B, Dias J, Duncan N, Engrola S, Estevez A, Gisbert E, Mañanós E, Valente LMP, Yúfera M, Dinis MT (2016) New developments and biological insights into the farming of Solea senegalensis reinforcing its aquaculture potential. Rev Aquacult 8:227–263CrossRefGoogle Scholar
  32. Neori A, Cohen I, Gordin H (1991) Ulva lactuca biofilter for marine fishpond effluents: II. Growth rate, yield and C:N ratio. Bot Mar 34:389–398CrossRefGoogle Scholar
  33. Ren JS, Barr NG, Scheuer K, Schiel DR, Zeldis J (2014) A dynamic growth model of macroalgae: application in an estuary recovering from treated wastewater and earthquake-driven eutrophication. Estuar Coast Shelf S 148:59–69CrossRefGoogle Scholar
  34. Rorrer GL, Cheney DP (2004) Bioprocess engineering of cell and tissue cultures for marine seaweeds. Aquac Eng 32:11–41CrossRefGoogle Scholar
  35. Salas-Leiton E, Anguis V, Manchado M, Cañavate JP (2008) Growth, feeding and oxygen consumption of Senegalese sole (Solea senegalensis) juveniles stocked at different densities. Aquaculture 285:84–89CrossRefGoogle Scholar
  36. Solidoro C, Pecenik G, Pastres R, Franco D, Dejak C (1997) Modelling macroalgae (Ulva rigida) in the Venice lagoon: model structure identification and first parameters estimation. Ecol Model 94:191–206CrossRefGoogle Scholar
  37. Yokoyama H, Ishihi Y (2010) Bioindicator and biofilter function of Ulva spp. (Chlorophyta) for dissolved inorganic nitrogen discharged from a coastal fish farm - potential role in integrated multi-trophic aquaculture. Aquaculture 310:74–83CrossRefGoogle Scholar
  38. Yun YS, Park JM (2003) Kinetic modeling of the light-dependent photosynthetic activity of the green microalga Chlorella vulgaris. Biotechnol Bioeng 83:303–311CrossRefPubMedGoogle Scholar
  39. Zou D (2014) The effects of severe carbon limitation on the green seaweed, Ulva conglobata (Chlorophyta). J Appl Phycol 26:2417–2424Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Departament d’Enginyeria Agroalimentària i BiotecnologiaUniversitat Politècnica de Catalunya–BarcelonaTECHCastelldefelsSpain
  2. 2.Coastal Biology Research Group (BioCost), Centro de Investigacións Científicas Avanzadas (CICA)Universidade da CoruñaA CoruñaSpain
  3. 3.Instituto de Investigacións Mariñas (IIM–CSIC)VigoSpain

Personalised recommendations