Skip to main content
Log in

Expression analysis of three phosphate transporter genes in the fast-growing mutants of Gracilariopsis lemaneiformis (Rhodophyta) under low phosphorus condition

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Three phosphate transporter (PHT) genes of Gracilariopsis lemaneiformis were cloned, and the expression patterns under different phosphate concentrations were analyzed. The phylogenetic analysis indicated that the amino acid sequence of GlPHT2 shared high identity with high-affinity PHT in many species. Meanwhile, GlPHT1 and GlPHT3 showed significant similarity to the low-affinity PHT sequences of other species. The results of expression patterns analysis showed that glpht2 was significantly upregulated when glpht1 remained expression stable under low-phosphorus treatment. The expression of glpht3 is positively correlated with the concentration of environmental phosphorus. Therefore, these results provided important evidence of the mechanism of Pi uptake and use in G. lemaneiformis. In addition, the low-phosphorus fast-growing mutant WLP-22 showed traits superiority in both growth and photosynthetic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Ai P, Sun S, Zhao J, Fan X, Xin W, Guo Q, Lu L, Shen Q, Wu P, Miller AJ, Xu G (2009) Two rice phosphate transporters, OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation. Plant J 57:798–809

    Article  CAS  PubMed  Google Scholar 

  • Barber SA, Walker JM, Vasey EH (1963) Mechanisms for movement of plant nutrients from soil and fertilizer to plant root. J Agric Food Chem 11:204–207

    Article  CAS  Google Scholar 

  • Basu PS, Sharma A, Sukumaran NP (1998) Changes in net photosynthetic rate and chlorophyll fluorescence in potato leaves induced by water stress. Photosynthetica 35:13–19

    Article  Google Scholar 

  • Bayle V, Arrighi JF, Creff A, Nespoulous C, Vialaret J, Rossignol M, Gonzalez E, Paz-Ares J, Nussaume L (2011) Arabidopsis thaliana high-affinity phosphate transporters exhibit multiple levels of posttranslational regulation. Plant Cell 23:1523–1535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bunya M, Nishimura M, Harashima S, Oshima Y (1991) The PH084 gene of Saccharomyces cerevisiae encodes an inorganic phosphate transporter. Mol Cell Biol 11:3229–3238

    Article  CAS  Google Scholar 

  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiou TJ, Liu H, Harrison MJ (2001) The spatial expression patterns of a phosphate transporter (MtPt1) from Medicago truncatula indicate a role in phosphate transport at the root/soil interface. Plant J 25:281–293

    Article  CAS  PubMed  Google Scholar 

  • Chung CC, Hwang SPL, Chang J (2003) Identification of a high-affinity phosphate transporter gene in a prasinophyte alga, Tetraselmis chui, and its expression under nutrient limitation. Appl Environ Microbiol 69:754–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cock JM, Sterck L, Rouze P et al (2010) The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 465:617–621

    Article  CAS  PubMed  Google Scholar 

  • Daram P, Brunner S, Rausch C, Steiner C, Amrhein N, Bucher M (1999) Pht2;1 encodes a low-affinity phosphate transporter from Arabidopsis. Plant Cell 11:2153–2166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fei X (2004) Solving the coastal eutrophication problem by large scale seaweed cultivation. Hydrobiologia 512:145–151

    Article  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • Guo B, Jin Y, Wussler C, Blancaflor EB, Motes CM, Versaw WK (2008) Functional analysis of the Arabidopsis PHT4 family of intracellular phosphate transporters. New Phytol 177:889–898

    Article  CAS  PubMed  Google Scholar 

  • Guo CJ, Zhao JF, Sun C, Gu J, Lu W, Li X, Xiao K (2011) Expression, transcriptional regulation and functional analysis of phosphate transporter genes in plants. Front Agric China 5:22–30

    Article  Google Scholar 

  • Holford ICR (1997) Soil phosphorus: its measurement, and its uptake by plants. Soil Res 35:227–239

    Article  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Lee RB (1993) Control of net uptake of nutrients by regulation of influx in barley plants recovering from nutrient deficiency. Ann Bot 72:223–230

    Article  CAS  Google Scholar 

  • Li Q, Gao X, Sun Y, Zhang Q, Song R, Xu Z (2006) Isolation and characterization of a sodium-dependent phosphate transporter gene in Dunaliella viridis. Biochem Biophys Res Commun 34:95–104

    Article  CAS  Google Scholar 

  • Liu H, Trieu AT, Blaycock LA, Harrison MJ (1998) Cloning and characterization of two phosphate transporters from Medicago truncatula roots: regulation in response to phosphate and to colonization by arbuscular mycorrhizal (AM) fungi. Mol Plant-Microbe Interact 11:14–22

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Arredondo DL, Leyva-Gonzalez MA, Gonzalez-Morales SI, Lopez-Bucio J, Herrera-Estrella L (2014) Phosphate nutrition: improving low-phosphate tolerance in crops. Annu Rev Plant Biol 65:95–123

    Article  CAS  PubMed  Google Scholar 

  • Marchler-Bauer A, Lu S, Anderson JB et al (2011) CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res 39:225–229

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London

    Google Scholar 

  • Martinez P, Persson BL (1998) Identification, cloning and characterization of a derepressible Na+-coupled phosphate transporter in Saccharomyces cerevisiae. Mol Gen Genet 258:628–638

    Article  CAS  PubMed  Google Scholar 

  • McHugh DJ (1991) Worldwide distribution of commercial resources of seaweeds including Gelidium. Hydrobiologia 221:19–29

    Article  Google Scholar 

  • Mimura T (1999) Regulation of phosphate transport and homeostasis in plant cells. Int Rev Cytol 191:149–200

    Article  CAS  Google Scholar 

  • Ming F, Lu Q, Wang W, Zhang S, Guo B, Shen D (2006) Cloning, expression and function of phosphate transporter encoded gene in Oryza sativa L. Sci China Ser C 49:409–413

    Article  CAS  Google Scholar 

  • MOA (2017) China fishery statistical yearbook. China Agriculture Press, Beijing

    Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York

    Google Scholar 

  • Ofiteru AM, Ruta LL, Rotaru C, Dumitru I, Ene CD, Neagoe A, Farcasanu IC (2012) Overexpression of the PHO84 gene causes heavy metal accumulation and induces Ire1p-dependent unfolded protein response in Saccharomyces cerevisiae cells. Appl Microbiol Biotechnol 94:425–435

    Article  CAS  PubMed  Google Scholar 

  • Ogawa N, DeRisi J, Brown PO (2000) New components of a system for phosphate accumulation and polyphosphate metabolism in Saccharomyces cerevisiae revealed by genomic expression analysis. Mol Biol Cell 11:4309–4432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palenik B, Grimwood J, Aerts A, Rouze P, Salamov A, Putnam N, Dupont C, Jorgensen R, Derelle E, Rombauts S, Zhou K, Otillar R, Merchant SS, Podell S, Gaasterland T, Napoli C, Gendler K, Manuell A, Tai V, Vallon O, Piganeau G, Jancek S, Heijde M, Jabbari K, Bowler C, Lohr M, Robbens S, Werner G, Dubchak I, Pazour GJ, Ren Q, Paulsen I, Delwiche C, Schmutz J, Rokhsar D, van de Peer Y, Moreau H, Grigoriev IV (2007) The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proc Natl Acad Sci U S A 104:7705–7710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pflugmacher S, Steinberg C (1997) Activity of phase I and phase II detoxication enzymes in aquatic macrophytes. J Appl Bot 71:144–146

    CAS  Google Scholar 

  • Pudake RN, Mehta CM, Mohanta TK, Sharma S, Varma A, Sharma AK (2017) Expression of four phosphate transporter genes from Finger millet (Eleusine coracana L.) in response to mycorrhizal colonization and Pi stress. 3 Biotech 7:17–29

    Article  PubMed  PubMed Central  Google Scholar 

  • Raghothama KG (1999) Phosphate acquisition. Annu Rev Plant Physiol Plant Molec Biol 50:665–693

    Article  CAS  Google Scholar 

  • Ren XY, Zhang XC, Mao YX, Sui ZH, Xu D, Zang XN (2008) Cloning and characterization of a Rab11 homologue in Gracilariopsis lemaneiformis. J Appl Phycol 20:1103–1109

    Article  CAS  Google Scholar 

  • Rosenberg H, Gerdes RG, Chegwidden K (1977) Two systems for the uptake of phosphate in Escherichia coli. J Bacteriol 131:505–511

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sánchez-Calderón L, Chacon-López A, Pérez-Torres C-A, Herrera- Estrella L (2010) Phosphorus: plant strategies to cope with its scarcity. In: Hell R, Mendel RR (eds) Cell biology of metals and nutrients. Springer, Berlin, pp 173–198

    Chapter  Google Scholar 

  • Santelices B, Doty MS (1989) A review of Gacilaria farming. Aquaculture 78:95–133

    Article  Google Scholar 

  • Smith FW (2001) Plant responses to nutritional stress. In: Hawkesford MJ, Buchner P (eds) Molecular analysis of plant adaptation to the environment. Kluwer, Dordrecht, pp 249–269

    Chapter  Google Scholar 

  • Song Z, Shao H, Huang H, Shen Y, Wang L, Wu F, Han D, Song J, Jia H (2017) Overexpression of the phosphate transporter gene OsPT8 improves the Pi and selenium contents in Nicotiana tabacum. Environ Exp Bot 137:158–165

    Article  CAS  Google Scholar 

  • Stevensonpaulik J, Bastidas RJ, Chiou ST, Frye RA, York JD (2005) Generation of phytate-free seeds in Arabidopsis through disruption of inositol polyphosphate kinases. Proc Natl Acad Sci U S A 102:12612–12617

    Article  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Versaw WK, Harrison MJ (2002) A chloroplast phosphate transporter, PHT2;1, influences allocation of phosphate within the plant and phosphate-starvation responses. Plant Cell 14:1751–1766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Versaw WK, Metzenberg RL (1995) Repressible cation-phosphate symporters in Neurospora crassa. Proc Natl Acad Sci U S A 92:3884–3887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang WJ, Wang GC, Gao ZQ, Lin XZ, Xu P (2007) Characterization of Gracilaria lemaneiformis Bory (Gracilariaceae, Rhodophyta) cultivars in China using the total soluble proteins and RAPD analysis. Bot Mar 50:177–184

    CAS  Google Scholar 

  • Wang F, Deng M, Xu J, Zhu X, Mao C (2018) Molecular mechanisms of phosphate transport and signaling in higher plants. Semin Cell Dev Biol 74:114–122

    Article  CAS  PubMed  Google Scholar 

  • Wei HH, Sui ZH, Wang JG et al (2016) X-ray-irradiation mutation on carpospores of Gracilariopsis lemaneiformis and screening of mutants with superior traits. Period Ocean Univ China 46:50–58 (in Chinese with English abstract)

  • Weiss M, Haimovich G, Pick U (2001) Phosphate and sulfate uptake in the halotolerant alga Dunaliella are driven by Na+-symport mechanism. J Plant Physiol 158:1519–1525

    Article  CAS  Google Scholar 

  • Wild R, Gerasimaite R, Jung JY, Truffault V, Pavlovic I, Schmidt A, Saiardi A, Jessen HJ, Poirier Y, Hothorn M, Mayer A (2016) Control of eukaryotic phosphate homeostasis by inositol polyphosphate sensor domains. Science 352:986–990

    Article  CAS  PubMed  Google Scholar 

  • Wu JF, Sunda W, Boyle EA, Karl DM (2000) Phosphate depletion in the western North Atlantic Ocean. Science 289:759–762

    Article  CAS  PubMed  Google Scholar 

  • Xu YJ (2004) Study on nutrient ecology of seaweeds used for remediating maricultural eutrophication. Dissertation, Xiamen University

  • Zhang F, Wu X-N, Zhou H-M, Wang D-F, Jiang T-T, Sun Y-F, Cao Y, Pei W-X, Sun S-B (2014) Overexpression of rice phosphate transporter gene OsPT6 enhances phosphate uptake and accumulation in transgenic rice plants. Plant Soil 384:259–270

    Article  CAS  Google Scholar 

  • Zhou W, Hu Y, Sui Z, Fu F, Wang J, Chang L, Guo W, Li B (2013) Genome survey sequencing and genetic background characterization of Gracilariopsis lemaneiformis (Rhodophyta) based on next-generation sequencing. PLoS One 8:e69909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 31372529), the Fundamental Research Funds for the Central Universities (No. 201762016), and China Agriculture Research System (CARS-50).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenghong Sui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, M., Wei, H., Chen, H. et al. Expression analysis of three phosphate transporter genes in the fast-growing mutants of Gracilariopsis lemaneiformis (Rhodophyta) under low phosphorus condition. J Appl Phycol 31, 1907–1919 (2019). https://doi.org/10.1007/s10811-018-1679-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-018-1679-8

Keywords