Skip to main content
Log in

Efficient heterotrophic cultivation of Chlamydomonas reinhardtii

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

With a unique cell structure and clear genetic background, Chlamydomonas reinhardtii has become a model species for fundamental research on microalgae and lower plants. Genetic transformations in the nucleus and chloroplast and mitochondrial genomes of C. reinhardtii have been successfully developed. However, research of C. reinhardtii has mainly focused on physiology and molecular genetics and few studies investigating cultivation methods have been performed. Small scales, slow growth, and low yields from conventional photoautotrophic and mixotrophic cultures severely limit the further development and application of C. reinhardtii. This study sought to optimize and scale up the heterotrophic cultivation process for C. reinhardtii. Critical parameters in 500-mL shake flasks were optimized as follows: liquid volume of 150 mL, initial inoculation of 0.08 g L−1, growth temperature of 30 °C, and shaking speed of 150 rpm. In addition, this study confirmed that, although C. reinhardtii can assimilate acetic acid for heterotrophic growth (optimum initial concentration of 80 mM), neither glucose nor glycerol can be the only carbon source. Nitrate, ammonia, and urea can be used as nitrogen sources for heterotrophic culture, while the optimal carbon and nitrogen ratio for heterotrophic culture was 40:1. Under optimal conditions, the C. reinhardtii biomass increased from 0.457 to 1.32 g L−1. Furthermore, for the first time, heterotrophic cultures of C. reinhardtii were scaled up to 5-L and 50-L fermenters, in which the cell density reached 25.44 g L−1 after 237 h, which is 2.82-fold higher than previously reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Boyle NR, Morgan JA (2009) Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii. BMC Syst Biol 3:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camacho FG, Rodríguez JJG, Mirón AS, García MCC, Belarbi EH, Grima EM (2007) Determination of shear stress thresholds in toxic dinoflagellates cultured in shaken flasks: implications in bioprocess engineering. Process Biochem 42:1506–1515

    Article  CAS  Google Scholar 

  • Carrera Pacheco SE, Hankamer B, Oey M (2018) Optimising light conditions increases recombinant protein production in Chlamydomonas reinhardtii chloroplasts. Algal Res 32:329–340

    Article  Google Scholar 

  • Chen F, Johns MR (1994) Substrate inhibition of Chlamydomonas reinhardtii by acetate in heterotrophic culture. Process Biochem 29:245–252

    Article  CAS  Google Scholar 

  • Chen F, Johns MR (1996a) Heterotrophic growth of Chlamydomonas reinhardtii on acetate in chemostat culture. Process Biochem 31:601–604

    Article  CAS  Google Scholar 

  • Chen F, Johns MR (1996b) High cell density culture of Chlamydomonas reinhardtii on acetate using fed-batch and hollow-fibre cell-recycle systems. Bioresour Technol 55:103–110

    Article  CAS  Google Scholar 

  • Chen F, Johns MR (1996c) Relationship between substrate inhibition and maintenance energy of Chlamydomonas reinhardtii in heterotrophic culture. J Appl Phycol 8:15–19

    Article  Google Scholar 

  • Chen M, Zhang L, Li S, Chang S, Wang W, Zhang Z, Wang J, Zhao G, Qi L, Xu W (2014) Characterization of cell growth and photobiological H2 production of Chlamydomonas reinhardtii in ASSF industry wastewater. Int J Hydrogen Energy 39:13462–13467

    Article  CAS  Google Scholar 

  • Cifuentes AS, González MA, Vargas S, Hoeneisen M, González N (2003) Optimization of biomass, total carotenoids and astaxanthin production in Haematococcus pluvialis Flotow strain Steptoe (Nevada, USA) under laboratory conditions. Biol Res 36:343–357

    Article  CAS  PubMed  Google Scholar 

  • Degrenne B, Pruvost J, Christophe G, Cornet JF, Cogne G, Legrand J (2010) Investigation of the combined effects of acetate and photobioreactor illuminated fraction in the induction of anoxia for hydrogen production by Chlamydomonas reinhardtii. Int J Hydrogen Energy 35:10741–10749

    Article  CAS  Google Scholar 

  • Fan J, Zheng L (2017) Acclimation to NaCl and light stress of heterotrophic Chlamydomonas reinhardtii for lipid accumulation. J Biosci Bioeng 124:302–308

    Article  CAS  PubMed  Google Scholar 

  • Faraloni C, Ena A, Pintucci C, Torzillo G (2011) Enhanced hydrogen production by means of sulfur-deprived Chlamydomonas reinhardtii cultures grown in pretreated olive mill wastewater. Int J Hydrogen Energy 36:5920–5931

    Article  CAS  Google Scholar 

  • Fedorov AS, Kosourov S, Ghirardi ML, Seibert M (2005) Continuous hydrogen photoproduction by Chlamydomonas reinhardtii: using a novel two-stage, sulfate-limited chemostat system. Appl Biochem Biotechnol 124:403–412

    Article  Google Scholar 

  • Fields FJ, Ostrand JT, Mayfield SP (2018) Fed-batch mixotrophic cultivation of Chlamydomonas reinhardtii for high-density cultures. Algal Res 33:109–117

    Article  Google Scholar 

  • Guebel DV, Nudel BC, Giulietti AM (1991) A simple and rapid micro-Kjeldahl method for total nitrogen analysis. Biotechnol Tech 5:427–430

    Article  CAS  Google Scholar 

  • Janssen M, Janssen M, Md W, Tramper J, Mur LR, Snel J, Wijffels RH (2000) Efficiency of light utilization of Chlamydomonas reinhardtii under medium-duration light/dark cycles. J Biotechnol 78:123–137

    Article  CAS  PubMed  Google Scholar 

  • Johanningmeier U, Fischer D (2011) Perspective for the use of genetic transformants in order to enhance the synthesis of the desired metabolites: engineering chloroplasts of microalgae for the production of bioactive compounds. Adv Exp Med Biol 698:144–151

    Article  Google Scholar 

  • Kim MS, Baek JS, Yun YS, Sang JS, Park S, Kim SC (2006) Hydrogen production from Chlamydomonas reinhardtii biomass using a two-step conversion process: anaerobic conversion and photosynthetic fermentation. Int J Hydrogen Energy 31:812–816

    Article  CAS  Google Scholar 

  • Kong Q-X, Li L, Martinez B, Chen P, Ruan R (2009) Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Appl Biochem Biotechnol 160:9–18

    Article  CAS  PubMed  Google Scholar 

  • Kosourov S, Patrusheva E, Ghirardi ML, Seibert M, Tsygankov A (2007) A comparison of hydrogen photoproduction by sulfur-deprived Chlamydomonas reinhardtii under different growth conditions. J Biotechnol 128:776–787

    Article  CAS  PubMed  Google Scholar 

  • Lalibertè G, de la Noüe J (1993) Auto-, hetero-, and mixotrophic growth of Chlamydomonas humicola (Chlorophyceae) on acetate. J Phycol 29:612–620

    Article  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Moon M, Kim CW, Park WK, Yoo G, Choi YE, Yang JW (2013) Mixotrophic growth with acetate or volatile fatty acids maximizes growth and lipid production in Chlamydomonas reinhardtii. Algal Res 2:352–357

    Article  Google Scholar 

  • Nagy V, Vidal-Meireles A, Podmaniczki A, Szentmihályi K, Rákhely G, Zsigmond L, Kovács L, Tóth SZ (2018) The mechanism of photosystem-II inactivation during sulphur deprivation-induced H2 production in Chlamydomonas reinhardtii. Plant J 94:548–561

    Article  CAS  PubMed  Google Scholar 

  • Nam K, Jo A, Chang YK, Han J-I (2018) Lipid induction of Chlamydomonas reinhardtii CC-124 using bicarbonate ion. J Appl Phycol 30:271–275

    Article  CAS  Google Scholar 

  • Novoselov SV, Rao M, Onoshko NV, Zhi H, Kryukov GV, Xiang Y, Weeks DP, Hatfield DL, Gladyshev VN (2002) Selenoproteins and selenocysteine insertion system in the model plant cell system, Chlamydomonas reinhardtii. EMBO J 21:3681–3693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park W-K, Yoo G, Moon M, Kim CW, Choi Y-E, Yang J-W (2013) Phytohormone supplementation significantly increases growth of Chlamydomonas reinhardtii cultivated for biodiesel production. Appl Biochem Biotechnol 171:1128–1142

    Article  CAS  PubMed  Google Scholar 

  • Peter CP, Suzuki Y, Büchs J (2006) Hydromechanical stress in shake flasks: correlation for the maximum local energy dissipation rate. Biotechnol Bioeng 93:1164–1176

    Article  CAS  PubMed  Google Scholar 

  • Rasala BA, Mayfield SP (2011) The microalga Chlamydomonas reinhardtii as a platform for the production of human protein therapeutics. Bioeng Bugs 2:50–54

    Article  PubMed  PubMed Central  Google Scholar 

  • Rorrer GL, Mullikin RK (1999) Modeling and simulation of a tubular recycle photobioreactor for macroalgal cell suspension cultures. Chem Eng Sci 54:3153–3162

    Article  CAS  Google Scholar 

  • Scoma A, Giannelli L, Faraloni C, Torzillo G (2012) Outdoor H2 production in a 50-L tubular photobioreactor by means of a sulfur-deprived culture of the microalga Chlamydomonas reinhardtii. J Biotechnol 157:620–627

    Article  CAS  PubMed  Google Scholar 

  • Tamburic B, Zemichael FW, Maitland GC, Hellgardt K (2012) Effect of the light regime and phototrophic conditions on growth of the H2-producing green alga Chlamydomonas reinhardtii. Energy Procedia 29:710–719

    Article  CAS  Google Scholar 

  • Velmurugan N, Sung M, Yim SS, Park MS, Yang JW, Jeong KJ (2014) Systematically programmed adaptive evolution reveals potential role of carbon and nitrogen pathways during lipid accumulation in Chlamydomonas reinhardtii. Biotechnol Biofuels 7:117

    PubMed  PubMed Central  Google Scholar 

  • Wang X, Ruan Z, Sheridan P, Boileau D, Liu Y, Liao W (2015) Two-stage photoautotrophic cultivation to improve carbohydrate production in Chlamydomonas reinhardtii. Biomass Bioenergy 74:280–287

    Article  CAS  Google Scholar 

  • Zedler JAZ, Gangl D, Guerra T, Santos E, Verdelho VV, Robinson C (2016) Pilot-scale cultivation of wall-deficient transgenic Chlamydomonas reinhardtii strains expressing recombinant proteins in the chloroplast. Appl Microbiol Biotechnol 100:7061–7070

    Article  CAS  PubMed  Google Scholar 

  • Zhang XW, Chen F, Johns MR (1999) Kinetic models for heterotrophic growth of Chlamydomonas reinhardtii in batch and fed-batch cultures. Process Biochem 35:385–389

    Article  CAS  Google Scholar 

  • Zhu C, Chen C, Zhao L, Zhang Y, Yang J, Song L, Yang S (2012) Bioflocculant produced by Chlamydomonas reinhardtii. J Appl Phycol 24:1245–1251

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank LetPub (www.letpub.com) for its linguistic assistance in the publication of this work.

Funding

This work was partially supported in finance by the National Natural Science Foundation of China (NSFC; 21706071) and China Postdoctoral Science Foundation (2018M632044).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Minxi Wan or Yuanguang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Tan, Y., Wang, W. et al. Efficient heterotrophic cultivation of Chlamydomonas reinhardtii. J Appl Phycol 31, 1545–1554 (2019). https://doi.org/10.1007/s10811-018-1666-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-018-1666-0

Keywords

Navigation