Skip to main content

Effects of salinity changes on growth, photosynthetic activity, biochemical composition, and lipid productivity of marine microalga Tetraselmis suecica

Abstract

Salinity is an important factor affecting microalgal production yield especially under the uncontrollable environments of outdoor cultivation systems. Elucidating the optimal salinity range for algal biomass and high-value biochemical production might help to increase the production potential and reduce cultivation cost. This study examined the effects of salinity changes from that of normal seawater level (30 ppt) to various salinities from 10 to 60 ppt on growth, biomass, photosynthesis, morphology, biochemical composition, fatty acid composition, and volumetric productivity of the marine microalga Tetraselmis suecica. The optimal salinity for biomass production of T. suecica was in the range from 20 to 60 ppt. Severe growth inhibition, alterations in cell morphology, and reduction of photosynthetic rate were found at low salinity of 10 ppt, suggesting that the algal cells suffered from osmotic and ionic imbalance. Total protein, carbohydrate, and lipid content were not significantly affected under the different salinities, although the increase in salinity from 30 to 50 and 60 ppt improved the total lipid productivity by nearly 22%. Fatty acid composition and content remained unchanged over the range of salinities. The predominant fatty acids were of C16 to C18 chain lengths, whereas eicosapentaenoic acid (EPA) was the major long-chain polyunsaturated fatty acid (LC-PUFA). Together these results demonstrate that a wide range of salinities are suitable for cultivation of in T. suecica without a compromise in biomass yield and biochemical composition.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Adarme-Vega TC, Thomas-Hall SR, Lim DK, Schenk PM (2014) Effects of long chain fatty acid synthesis and associated gene expression in microalga Tetraselmis sp. Mar Drugs 12:3381–3398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • AOAC (2006) Chapter 11-AOAC official method 973.50. In: Horwitz W, Latimer GW (eds) Official methods of analysis of AOAC International, 18th edn, J. AOAC Int. Gaithersbrug, Maryland. pp 11

  • APHA, AWWA and WEF (1998) 4500-P phosphorus. In: Clesceri LS, Greenberg AE, Eaton AD (eds) Standard methods for the examination of water and wastewater, 20th edn. APHA, AWWA & WEF, Washington, pp 146–147

  • Al-Hasan RH, Ali AM, Hana H, Radwan SS (1990) Effect of salinity on the lipid and fatty acid composition of the halophyte Navicula sp.: potential in mariculture. J Appl Phycol 2:215–222

    Article  Google Scholar 

  • Ashraf MPJC, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16

    Article  CAS  Google Scholar 

  • Ben-Amotz A, Sussman I, Avron M (1982) Glycerol production by Dunaliella. In: Mislin H, Bachofen R (eds) New trends in research and utilization of solar energy through biological systems. Birkhäuser, Basel, pp 55–58

    Chapter  Google Scholar 

  • Ben-Amotz A, Avron M (1983) Accumulation of metabolites by halotolerant algae and its industrial potential. Annu Rev Microbiol 37:95–119

  • Bisson MA, Kirst GO (1995) Osmotic acclimation and turgor pressure regulation in algae. Naturwissenschaften 82:461–471

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Phys 37:911–917

  • Borowitzka MA (1997) Microalgae for aquaculture: opportunities and constraints. J Appl Phycol 9:393–401

    Article  Google Scholar 

  • Borowitzka MA (2013) High-value products from microalgae—their development and commercialisation. J Appl Phycol 25:743–756

    Article  CAS  Google Scholar 

  • Borowitzka MA (2016) Algal physiology and large-scale outdoor cultures of microalgae. In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Dordrecht, pp 601–652

    Chapter  Google Scholar 

  • Brock MA (1981) The ecology of halophytes in the south-east of South Australia. Hydrobiologia 81:23–32

    Article  Google Scholar 

  • Breuer G, Lamers PP, Martens DE, Draaisma RB, Wijffels RH (2012) The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Bioresour Technol 124:217–226

  • Chen GQ, Jiang Y, Chen F (2008) Salt-induced alterations in lipid composition of diatom Nitzschia laevis (Bacillariophyceae) under heterotrophic culture condition. J Phycol 44:1309–1314

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Duan X, Ren GY, Liu LL, Zhu WX (2012) Salt-induced osmotic stress for lipid overproduction in batch culture of Chlorella vulgaris. Afr J Biotechnol 11:7072–7078

    CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers P, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Fabregas J, Abalde J, Herrero C, Cabezas B, Veiga M (1984) Growth of the marine microalga Tetraselmis suecica in batch cultures with different salinities and nutrient concentrations. Aquaculture 42:207–215

    Article  Google Scholar 

  • Fon-Sing S, Borowitzka MA (2016) Isolation and screening of euryhaline Tetraselmis spp. suitable for large-scale outdoor culture in hypersaline media for biofuels. J Appl Phycol 28:1–14

    Article  CAS  Google Scholar 

  • Ghezelbash F, Farboodnia T, Heidari R, Agh N (2008) Biochemical effects of different salinities and luminance on green microalgae Tetraselmis chuii. Res J Biol Sci 3:217–221

    Google Scholar 

  • Gimmler H (2000) Primary sodium plasma membrane ATPases in salt-tolerant algae: facts and fictions. J Exp Bot 51:1171–1178

    Article  CAS  PubMed  Google Scholar 

  • Go S, Lee SJ, Jeong GT, Kim SK (2012) Factors affecting the growth and the oil accumulation of marine microalgae, Tetraselmis suecica. Bioprocess Biosyst Eng 35:145–150

    Article  CAS  PubMed  Google Scholar 

  • Griffiths MJ, Harrison ST (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507

    Article  CAS  Google Scholar 

  • Griffiths MJ, van Hille RP, Harrison ST (2012) Lipid productivity, settling potential and fatty acid profile of 11 microalgal species grown under nitrogen replete and limited conditions. J Appl Phycol 24:989–1001

    Article  CAS  Google Scholar 

  • Gröne T, Kirst GO (1992) The effect of nitrogen deficiency, methionine and inhibitors of methionine metabolism on the DMSP contents of Tetraselmis subcordiformis (Stein). Mar Biol 112:497–503

    Article  Google Scholar 

  • Guillard RR, Ryther JH (1962) Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239

    Article  CAS  PubMed  Google Scholar 

  • Hellebust JA (1976) Effect of salinity on photosynthesis and mannitol synthesis in the green flagellate Platymonas suecica. Can J Bot 54:1735–1741

    Article  CAS  Google Scholar 

  • Huang X, Huang Z, Wen W, Yan J (2013) Effects of nitrogen supplementation of the culture medium on the growth, total lipid content and fatty acid profiles of three microalgae (Tetraselmis subcordiformis, Nannochloropsis oculata and Pavlova viridis). J Appl Phycol 25:129–137

    Article  CAS  Google Scholar 

  • Huerlimann R, De Nys R, Heimann K (2010) Growth, lipid content, productivity, and fatty acid composition of tropical microalgae for scale-up production. Biotechnol Bioeng 107:245–257

    Article  CAS  PubMed  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  CAS  PubMed  Google Scholar 

  • Juneja A, Ceballos RM, Murthy GS (2013) Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies 6:4607–4638

    Article  CAS  Google Scholar 

  • Jassby AD, Platt T (1976) Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol Oceanogr 21:540–547

    Article  CAS  Google Scholar 

  • Kaur S, Sarkar M, Srivastava RB, Gogoi HK, Kalita MC (2012) Fatty acid profiling and molecular characterization of some freshwater microalgae from India with potential for biodiesel production. New Biotechnol 29:332–344

    Article  CAS  Google Scholar 

  • Kim G, Bae J, Lee K (2016) Nitrate repletion strategy for enhancing lipid production from marine microalga Tetraselmis sp. Bioresour Technol 205:274–279

    Article  CAS  PubMed  Google Scholar 

  • Kirst G (1977) Coordination of ionic relations and mannitol concentrations in the euryhaline unicellular alga, Platymonas subcordiformis (Hazen) after osmotic shocks. Planta 135:69–75

    Article  CAS  PubMed  Google Scholar 

  • Knothe G (2008) “Designer” biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuel 22:1358–1364

    Article  CAS  Google Scholar 

  • Lavens P, Sorgeloos P (eds) (1996) Manual on the production and use of live food for aquaculture. FAO Fisheries Technical Paper. No. 361. FAO, Rome. p 14

  • Lee SJ, Go S, Jeong GT, Kim SK (2011) Oil production from five marine microalgae for the production of biodiesel. Biotechnol Bioprocess Eng 16:561–566

    Article  CAS  Google Scholar 

  • Lu IF, Sung MS, Lee TM (2006) Salinity stress and hydrogen peroxide regulation of antioxidant defense system in Ulva fasciata. Mar Biol 150:1–15

    Article  CAS  Google Scholar 

  • Lichtenthaler HK, Buschmann C (2001) Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy. In: Wrolstad RE (ed) Current protocols in food analytical chemistry. John Wiley and Sons, New York, pp F4.3.1–F4.3.8

    Google Scholar 

  • Makri A, Bellou S, Birkou M, Papatrehas K, Dolapsakis NP, Bokas D, Papanikolaou S, Aggelis G (2011) Lipid synthesized by micro-algae grown in laboratory-and industrial-scale bioreactors. Eng Life Sci 11:52–58

    Article  CAS  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232

    Article  CAS  Google Scholar 

  • Martínez-Roldán AJ, Perales-Vela HV, Cañizares-Villanueva RO, Torzillo G (2014) Physiological response of Nannochloropsis sp. to saline stress in laboratory batch cultures. J Appl Phycol 26:115–121

    Article  CAS  Google Scholar 

  • Meijer EA, Wijffels RH (1998) Development of a fast, reproducible and effective method for the extraction and quantification of proteins of micro-algae. Biotechnol Tech 12:353–358

    Article  CAS  Google Scholar 

  • Menden-Deuer S, Lessard EJ (2000) Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol Oceanogr 45:569–579

    Article  CAS  Google Scholar 

  • Mitra M, Kirst H, Dewez D, Melis A (2012) Modulation of the light-harvesting chlorophyll antenna size in Chlamydomonas reinhardtii by TLA1 gene over-expression and RNA interference. Phil Trans Roy Soc B 367:3430–3443

    Article  CAS  Google Scholar 

  • Moheimani NR (2016) Tetraselmis suecica culture for CO2 bioremediation of untreated flue gas from a coal-fired power station. J Appl Phycol 28:2139–2146

    Article  CAS  Google Scholar 

  • Norris RE, Hori T, Chihara M (1980) Revision of the genus Tetraselmis (Class Prasinophyceae). Bot Mag (Tokyo) 93:317–339

    Article  Google Scholar 

  • Pisal DS, Lele S (2005) Carotenoid production from microalga, Dunaliella salina. Indian J Biotechnol 4:476–483

    CAS  Google Scholar 

  • Popova LG, Balnokin YV (2013) Na+-ATPases of halotolerant microalgae. Russ J Plant Physiol 60:472–482

    Article  CAS  Google Scholar 

  • Pugkaew W, Meetam M, Ponpuak M, Yokthongwattana K, Pokethitiyook P (2017) Role of autophagy in triacylglycerol biosynthesis in Chlamydomonas reinhardtii revealed by chemical inducer and inhibitors. J Appl Phycol 30:15–22

    Article  CAS  Google Scholar 

  • Qi B, Fraser T, Mugford S, Dobson G, Sayanova O, Butler J, Napier JA, Stobart AK, Lazarus CM (2004) Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Nat Biotechnol 22:739–745

    Article  CAS  PubMed  Google Scholar 

  • Raes EJ, Isdepsky A, Muylaert K, Borowitzka MA, Moheimani NR (2014) Comparison of growth of Tetraselmis in a tubular photobioreactor (Biocoil) and a raceway pond. J Appl Phycol 26:247–255

    Article  CAS  Google Scholar 

  • Rao AR, Dayananda C, Sarada R, Shamala TR, Ravishankar GA (2007) Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresour Technol 98:560–564

    Article  CAS  PubMed  Google Scholar 

  • Rasool S, Hameed A, Azooz MM, Siddiqi TO, Ahmad P (2012) Salt stress: cause, types and responses of plants. In: Ahmad P, Azooz MM, Prasad MNV (eds) Ecophysiology and responses of plants under salt stress. Springer, London, pp 1–24

    Google Scholar 

  • Rodolfi L, Zittelli Chini G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    Article  CAS  PubMed  Google Scholar 

  • Shepherd VA, Beilby MJ (1999) The effect of an extracellular mucilage on the response to osmotic shock in the charophyte alga Lamprothamnium papulosum. J Membr Biol 170:229–242

    Article  CAS  PubMed  Google Scholar 

  • Sing SF, Isdepsky A, Borowitzka MA, Lewis DM (2014) Pilot-scale continuous recycling of growth medium for the mass culture of a halotolerant Tetraselmis sp. in raceway ponds under increasing salinity: a novel protocol for commercial microalgal biomass production. Bioresour Technol 161:47–54

    Article  CAS  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  PubMed  Google Scholar 

  • Strizh IG, Popova LG, Andreev IM, Balnokin YV (2002) Possible changes in kinetic characteristics of Na+-ATPase of the microalga Tetraselmis viridis during its adaptation to various NaCl concentrations. Dokl Biochem Biophys 383:75–78

    Article  CAS  PubMed  Google Scholar 

  • Suganya T, Varman M, Masjuki H, Renganathan S (2016) Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: a biorefinery approach. Renew Sust Energ Rev 55:909–941

    Article  CAS  Google Scholar 

  • Takagi M, Yoshida T (2006) Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J Biosci Bioeng 101:223–226

    Article  CAS  PubMed  Google Scholar 

  • Vaz B, Moreira J, Morais M, Costa J (2016) Microalgae as a new source of bioactive compounds in food supplements. Curr Opin Food Sci 7:73–77

    Article  Google Scholar 

  • White TJ, Bruns T, Lee SJWT, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Yao CH, Ai JN, Cao XP, Xue S (2013) Salinity manipulation as an effective method for enhanced starch production in the marine microalga Tetraselmis subcordiformis. Bioresour Technol 146:663–671

    Article  CAS  PubMed  Google Scholar 

  • Zhu CJ, Lee YK (1997) Determination of biomass dry weight of marine microalgae. J Appl Phycol 9:189–194

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Assoc. Prof. Philip D. Round for his assistance in English proof-reading and editing the manuscript.

Funding

This research was supported by PTT Research and Technology Institute, the Royal Golden Jubilee Ph.D. Program of Thailand (Thailand Research Fund), the Center of Excellence on Environmental Health and Toxicology, Science & Technology Postgraduate Education and Research Development Office (PERDO), and Ministry of Education, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prayad Pokethitiyook.

Electronic supplementary material

Fig. S1

Neighbor-Joining tree based on ITS sequence of microalga Tetraselmis used in this study and related sequences from the GenBank database. Numbers show bootstrap levels of confidence. The bootstrap value was obtained from 10,000 iterations. The scale under the tree corresponds to genetic distance. Accession numbers for the reference sequences are in front of their scientific name. The strain used in this study is underlined. (DOCX 30 kb)

Fig. S2

Light microscope showing morphological characteristics of Tetraselmis suecica (magnification at 1000×) grown at different salinities; (a) inoculums, 7 days after grown at (b) 30 ppt (control), (c) 10 ppt, (d) 20 ppt, (e) 40 ppt, (f) 50 ppt, (g) 60 ppt of salinity, and (h) 24 h after inoculated in 10 ppt. Arrows indicate algal cells with mucus layer. (DOCX 878 kb)

Table S1

(DOCX 17 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pugkaew, W., Meetam, M., Yokthongwattana, K. et al. Effects of salinity changes on growth, photosynthetic activity, biochemical composition, and lipid productivity of marine microalga Tetraselmis suecica. J Appl Phycol 31, 969–979 (2019). https://doi.org/10.1007/s10811-018-1619-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-018-1619-7

Keywords

  • Lipid productivity
  • Microalgae
  • Photosynthesis
  • Salinity
  • Tetraselmis suecica