Skip to main content

Microalgal/cyanobacterial biofilm formation on selected surfaces: the effects of surface physicochemical properties and culture media composition

Abstract

The increased interest in photosynthetic microorganisms for wastewater treatment processes has led to the demand for new biomass harvesting strategies. Biofilm systems have emerged as a good alternative to planktonic photosynthetic cultures. However, knowledge on the environmental aspects influencing microalgal/cyanobacterial biofilm formation is required. This study reports the influence of: (i) surface physicochemical properties of selected microorganisms (Chlorella vulgaris, Pseudokirchneriella subcapitata, Synechocystis salina, and Microcystis aeruginosa) and materials (copper—Cu; glass—G; poly(methyl methacrylate)—PMMA; polystyrene—PS; polyvinyl chloride—PVC; and AISI316 stainless steel—SS) and (ii) culture media composition (glucose-deficient and glucose-enriched media) on biofilm formation (up to 7 days), with constant temperature, light irradiation, and shaking conditions. Adhesion was assessed through thermodynamic prediction of adhesion and by in vitro adhesion assays on microtiter plates. In general, higher biofilm densities were observed after 7 days of experiment, and followed the order: SS > PS > G > PVC > PMMA> Cu. M. aeruginosa was the highest biofilm-former microorganism (2.1 × 106 CFU cm−2), while P. subcapitata has shown lack of ability to adhere. Moreover, the higher biofilm formation ability was observed when glucose-deficient medium was used. Furthermore, the present results pointed out that the thermodynamic approach failed to predict the stochasticity of microalgal/cyanobacterial adhesion. In light of these findings, others factors must be considered when using predictive tools. Therefore, fine-tuning on photosynthetic biofilm formation can be obtained by optimizing the bulk fluid composition and the type of surface. In conclusion, the results show the potential of the selected microalgae/cyanobacteria for biofilm-based technology.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Abdel-Raouf N, Al-Homaidan A, Ibraheem I (2012) Microalgae and wastewater treatment. Saudi J Biol Sci 19:257–275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Adey WH (1982) Algal turf scrubber. US patent 4333263

  • Aslan S, Kapdan IK (2006) Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol Eng 28:64–70

    Google Scholar 

  • Babu M (2011) Effect of algal biofilm and operational conditions on nitrogen removal in waste stabilization ponds. Dissertation, UNESCO-IHE Institute for Water Education

  • Barros AI, Gonçalves AL, Simões M, Pires JC (2015) Harvesting techniques applied to microalgae: a review. Renew Sust Energ Rev 41:1489–1500

    Google Scholar 

  • Becker K (1996) Exopolysaccharide production and attachment strength of bacteria and diatoms on substrates with different surface tensions. Microbiol Ecol 32:23–33

    CAS  Google Scholar 

  • Bischoff HW, Bold HC (1963) Phycological studies IV. Some soil algae from Enchanted Rock and related algal species. University of Texas Publication 6318:1–95

  • Boelee N, Temmink H, Janssen M, Buisman C, Wijffels R (2011) Nitrogen and phosphorus removal from municipal wastewater effluent using microalgal biofilms. Water Res 45:5925–5933

  • Booth C (1971) Methods in microbiology. Academic Press Inc, London

    Google Scholar 

  • Bridier A, Briandet R, Bouchez T, Jabot F (2014) A model-based approach to detect interspecific interactions during biofilm development. Biofouling 30:761–771

    PubMed  Google Scholar 

  • Busscher HJ, Weerkamp AH, van der Mei HC, Van Pelt A, de Jong HP, Arends J (1984) Measurement of the surface free energy of bacterial cell surfaces and its relevance for adhesion. Appl and Environ Microbiol 48:980–983

    CAS  Google Scholar 

  • Cai T, Park SY, Li Y (2013) Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sust Energ Rev 19:360–369

    CAS  Google Scholar 

  • Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22:1490–1506

    CAS  PubMed  Google Scholar 

  • Chae MS, Schraft H, Hansen LT, Mackereth R (2006) Effects of physicochemical surface characteristics of Listeria monocytogenes strains on attachment to glass. Food Microbiol 23:250–259

    CAS  PubMed  Google Scholar 

  • Characklis WG (1990) Biofilm processes. In: Characklis WG (ed) Biofilms. Wiley and Sons, New York, pp 195–231

    Google Scholar 

  • Chaves LC 2004. Estudo da cinética de formação de biofilmes em superfícies em contato com água potável. Dissertation, University of Minho

  • Christenson L (2011) Algal biofilm production and harvesting system for wastewater treatment with biofuels by-products. Dissertation, Utah State University

  • Christenson L, Sims R (2011) Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv 29:686–702

    CAS  PubMed  Google Scholar 

  • Costas E, Lopez-Rodas V (2006) Copper sulphate and DCMU-herbicide treatments increase asymmetry between sister cells in the toxic cyanobacteria Microcystis aeruginosa: implications for detecting environmental stress. Water Res 40:2447–2451

    CAS  PubMed  Google Scholar 

  • Del Campo JA, García-González M, Guerrero MG (2007) Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol 74:1163–1174

    CAS  PubMed  Google Scholar 

  • Di Pippo F, Bohn A, Congestri R, De Philippis R, Albertano P (2009) Capsular polysaccharides of cultured phototrophic biofilms. Biofouling 25:495–504

    PubMed  Google Scholar 

  • Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis J 8:881–890

    Google Scholar 

  • Doyle RJ (2000) Contribution of the hydrophobic effect to microbial infection. Microbes Infect 2:391–400

    CAS  PubMed  Google Scholar 

  • Fields MW, Hise A, Lohman EJ, Bell T, Gardner RD, Corredor L, Moll K, Peyton BM, Characklis GW, Gerlach R (2014) Sources and resources: importance of nutrients, resource allocation, and ecology in microalgal cultivation for lipid accumulation. Appl Microbiol Biotechnol 98:4805–4816

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gebara F (1999) Activated sludge biofilm wastewater treatment system. Water Res 33:230–238

    CAS  Google Scholar 

  • Gomes L, Moreira J, Miranda J, Simões M, Melo L, Mergulhão F (2013) Macroscale versus microscale methods for physiological analysis of biofilms formed in 96-well microtiter plates. J Microbiol Meth 95:342–349

    CAS  Google Scholar 

  • Gonçalves AL, Ferreira C, Loureiro JA, Pires JCM, Simões M (2015) Surface physicochemical properties of selected single and mixed cultures of microalgae and cyanobacteria and their relationship with sedimentation kinetics. Bioresour Bioprocess 2:1–10

    Google Scholar 

  • Grass G, Rensing C, Solioz M (2011) Metallic copper as an antimicrobial surface. Appl Environ Microbiol 77:1541–1547

    CAS  PubMed  Google Scholar 

  • Gregor J, Jančula D, Maršálek B (2008) Growth assays with mixed cultures of cyanobacteria and algae assessed by in vivo fluorescence: one step closer to real ecosystems? Chemosphere 70:1873–1878

    CAS  PubMed  Google Scholar 

  • Gross MA (2015) Development and optimization of biofilm based algal cultivation. Dissertation, Iowa State University

  • Gross M, Zhao X, Mascarenhas V, Wen Z (2016) Effects of the surface physico-chemical properties and the surface textures on the initial colonization and the attached growth in algal biofilm. Biotechnol Biofuels 9:1

    Google Scholar 

  • Hadjoudja S, Deluchat V, Baudu M (2010) Cell surface characterisation of Microcystis aeruginosa and Chlorella vulgaris. J Colloid Interf Sci 342:293–299

    CAS  Google Scholar 

  • Hill WR, Ryon MG, Schilling EM (1995) Light limitation in a stream ecosystem: responses by primary producers and consumers. Ecology 76:1297–1309

    Google Scholar 

  • Hodoki Y (2005) Bacteria biofilm encourages algal immigration onto substrata in lotic systems. Hydrobiologia 539:27–34

    Google Scholar 

  • Holland R, Dugdale T, Wetherbee R, Brennan A, Finlay J, Callow J, Callow ME (2004) Adhesion and motility of fouling diatoms on a silicone elastomer. Biofouling 20:323–329

    CAS  PubMed  Google Scholar 

  • Horn H, Reiff H, Morgenroth E (2003) Simulation of growth and detachment in biofilm systems under defined hydrodynamic conditions. Biotechnol Bioeng 81:607–617

    CAS  PubMed  Google Scholar 

  • Irving TE (2011) Factors influencing the formation and development of microalgal Biofilms Dissertation, University of Toronto

  • Irving TE, Allen DG (2011) Species and material considerations in the formation and development of microalgal biofilms. Appl Microbiol Biotechnol 92:283–294

    CAS  PubMed  Google Scholar 

  • Ista L (2011) Substratum interfacial energetic effects on the attachment of marine bacteria. Dissertation, The University of New Mexico

  • Ista LK, López GP (2013) Thermodynamic analysis of marine bacterial attachment to oligo (ethylene glycol)-terminated self-assembled monolayers. Biointerphases 8:24

    PubMed  Google Scholar 

  • Jamers A, Blust R, De Coen W, Griffin JL, Jones OA (2013) Copper toxicity in the microalga Chlamydomonas reinhardtii: an integrated approach. Biometals 26:731–740

    CAS  PubMed  Google Scholar 

  • Janczuk B, Chibowski E, Bruque J, Kerkeb M, Caballero FG (1993) On the consistency of surface free energy components as calculated from contact angles of different liquids: an application to the cholesterol surface. J Colloid Interf Sci 159:421–428

    CAS  Google Scholar 

  • Jensen KR (1996) Apparatus for water purification by culturing and harvesting attached algal communities US patent 5527456

  • Johnson MB, Wen Z (2010) Development of an attached microalgal growth system for biofuel production. Appl Microbiol Biotechnol 85:525–534

    CAS  PubMed  Google Scholar 

  • Katarzyna L, Sai G, Singh OA (2015) Non-enclosure methods for non-suspended microalgae cultivation: literature review and research needs. Renew Sust Energ Rev 42:1418–1427

    CAS  Google Scholar 

  • Kesaano M, Sims RC (2014) Algal biofilm based technology for wastewater treatment. Algal Res 5:231–240

    Google Scholar 

  • Kesaano M, Gardner RD, Moll K, Lauchnor E, Gerlach R, Peyton BM, Sims RC (2015) Dissolved inorganic carbon enhanced growth, nutrient uptake, and lipid accumulation in wastewater grown microalgal biofilms. Bioresour Technol 180:7–15

    CAS  PubMed  Google Scholar 

  • Kim YB, Jeong SH, Park JW (2013) Adsorption characteristics of microalgae on surface-modified photobioreactor system. J Biobased Mater Biol 7:80–84

    CAS  Google Scholar 

  • Knauss W, Schapery RA (1999) Recent advances in fracture mechanics. Springer, Berlin

    Google Scholar 

  • Kokare C, Chakraborty S, Khopade A, Mahadik K (2009) Biofilm: importance and applications. Indian J Biotechnol 8:159–168

    CAS  Google Scholar 

  • Korber DR, Lawrence JR, Lappin-Scott HM, Costerton JW (2003) Growth of microorganisms on surfaces. In: Lappin-Scott HM, Costerton JW (eds.) Microbial biofilms. Cambridge University Press, Cambridge, UK p. 15–45

  • Latała A, Nędzi M, Stepnowski P (2009) Toxicity of imidazolium and pyridinium based ionic liquids towards algae. Chlorella vulgaris, Oocystis submarina (green algae) and Cyclotella meneghiniana, Skeletonema marinoi (diatoms). Green Chem 11:580–588

  • Leale J (1998) Effects of copper sulfate on benthic algae: a laboratory experiment. McNair Schol J 2:46–51

    Google Scholar 

  • Levy JL, Stauber JL, Jolley DF (2007) Sensitivity of marine microalgae to copper: the effect of biotic factors on copper adsorption and toxicity. Sci Tot Environ 387:141–154

    CAS  Google Scholar 

  • Li B, Logan BE (2004) Bacterial adhesion to glass and metal-oxide surfaces. Colloids Surf B 36:81–90

    CAS  Google Scholar 

  • Li Y, Gao YH, Li XS, Yang JY, Que GH (2010) Influence of surface free energy on the adhesion of marine benthic diatom Nitzschia closterium MMDL533. Colloids and Surfaces B 75:550–556

    CAS  Google Scholar 

  • Liehr SK, Suidan MT, Eheart JW (1990) A modeling study of carbon and light limitation in algal biofilms. Biotechnol Bioeng 35:233–243

    CAS  PubMed  Google Scholar 

  • Lombardi AT, Hidalgo TMR, Vieira AAH, Sartori AL (2007) Toxicity of ionic copper to the freshwater microalga Scenedesmus acuminatus (Chlorophyceae, Chlorococcales). Phycologia 46:74–78

    Google Scholar 

  • Lopes F, Morin P, Oliveira R, Melo L (2005) The influence of nickel on the adhesion ability of Desulfovibrio desulfuricans. Colloids Surf B 46:127–133

    CAS  Google Scholar 

  • Mallick N (2002) Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals 15:377–390

    CAS  PubMed  Google Scholar 

  • Meireles A, Machado I, Fulgêncio R, Mergulhão F, Melo L, Simões M (2015) Efficacy of antimicrobial combinations to reduce the use of sodium hypochlorite in the control of planktonic and sessile Escherichia coli. Biochem Eng J 105:115–122

    Google Scholar 

  • Memon AR, Andresen J, Habib M, Jaffar M (2014) Simulated sugar factory wastewater remediation kinetics using algal-bacterial raceway reactor promoted by polyacrylate polyalcohol. Bioresour Technol 157:37–43

    CAS  PubMed  Google Scholar 

  • Menicucci Jr JA (2010) Algal biofilms, microbial fuel cells, and implementation of state-of-the-art research into chemical and Biol Eng laboratories. Dissertation, Montana State University

  • Milledge JJ, Heaven S (2013) A review of the harvesting of micro-algae for biofuel production. Rev Environ Sci Biotechnol 12:165–178

    Google Scholar 

  • Moreira-Santos M, Soares AM, Ribeiro R (2004) An in situ bioassay for freshwater environments with the microalga Pseudokirchneriella subcapitata. Ecotox Environ Saf 59:164–173

    CAS  Google Scholar 

  • Morra M, Cassinelli C (1998) Bacterial adhesion to polymer surfaces: a critical review of surface thermodynamic approaches. J Biomat Sci-Polym E 9:55–74

    Google Scholar 

  • Mulbry WW, Wilkie AC (2001) Growth of benthic freshwater algae on dairy manures. J Appl Phycol 13:301–306

    Google Scholar 

  • Mulbry W, Westhead EK, Pizarro C, Sikora L (2005) Recycling of manure nutrients: use of algal biomass from dairy manure treatment as a slow release fertilizer. Bioresour Technol 96:451–458

    CAS  PubMed  Google Scholar 

  • Muñoz R, Köllner C, Guieysse B (2009) Biofilm photobioreactors for the treatment of industrial wastewaters. J Hazard Mater 161:29–34

    PubMed  Google Scholar 

  • OECD (2011) Test No. 201: freshwater alga and cyanobacteria, growth inhibition test: organisation for economic co-operation and development

  • Oliveira R, Azeredo J, Teixeira P, Fonseca A (2001) The role of hydrophobicity in bacterial adhesion. BioLine 1:11–22

    Google Scholar 

  • Ozkan A (2012) Development of a novel algae biofilm photobioreactor for biofuel production. Dissertation, University of Texas

  • Ozkan A, Berberoglu H (2011) Adhesion of Chlorella vulgaris on hydrophilic and hydrophobic surfaces. In: ASME 2011 International Mechanical Engineering Congress and Exposition. Denver, Colorado, pp 169–178

  • Ozkan A, Berberoglu H (2013a) Adhesion of algal cells to surfaces. Biofouling 29:469–482

    PubMed  Google Scholar 

  • Ozkan A, Berberoglu H (2013b) Cell to substratum and cell to cell interactions of microalgae. Colloids Surf B 112:302–309

  • Ozkan A, Berberoglu H (2013c) Physico-chemical surface properties of microalgae. Colloids Surf B 112:287–293

    CAS  Google Scholar 

  • Priyadarshani I, Rath B (2012) Commercial and industrial applications of microalgae—a review. J Algal Biomass Utln 3:89–100

    Google Scholar 

  • Reed R, Reed G (1948) “Drop plate” method of counting viable bacteria. Can J Res E 26:317–326

    Google Scholar 

  • Ruiz J, Álvarez P, Arbib Z, Garrido C, Barragán J, Perales J (2011) Effect of nitrogen and phosphorus concentration on their removal kinetic in treated urban wastewater by Chlorella vulgaris. Int J Phytoremediat 13:884–896

    CAS  Google Scholar 

  • Schumacher G, Blume T, Sekoulov I (2003) Bacteria reduction and nutrient removal in small wastewater treatment plants by an algal biofilm. Water Sci Technol 47:195–202

    CAS  PubMed  Google Scholar 

  • Sekar R, Nair K, Rao V, Venugopalan V (2002) Nutrient dynamics and successional changes in a lentic freshwater biofilm. Freshw Biol 47:1893–1907

    Google Scholar 

  • Sekar R, Venugopalan V, Satpathy K, Nair K, Rao V (2004) Laboratory studies on adhesion of microalgae to hard substrates. Hydrobiologia 512:109–116

    Google Scholar 

  • Shen Y, Zhang H, Xu X, Lin X (2015) Biofilm formation and lipid accumulation of attached culture of Botryococcus braunii. Bioprocess Biosyst Eng 38:481–488

    CAS  PubMed  Google Scholar 

  • Simões LC, Simões M, Oliveira R, Vieira MJ (2007) Potential of the adhesion of bacteria isolated from drinking water to materials. J Basic Microb 47:174–183

    Google Scholar 

  • Simões M, Simões LC, Cleto S, Pereira MO, Vieira MJ (2008) The effects of a biocide and a surfactant on the detachment of Pseudomonas fluorescens from glass surfaces. Int J Food Microbiol 121:335–341

    PubMed  Google Scholar 

  • Simões LC, Simoes M, Vieira MJ (2010) Adhesion and biofilm formation on polystyrene by drinking water-isolated bacteria. Antonie Van Leeuwenhoek 98:317–329

    PubMed  Google Scholar 

  • Sinde E, Carballo J (2000) Attachment of Salmonella spp. and Listeria monocytogenes to stainless steel, rubber and polytetrafluorethylene: the influence of free energy and the effect of commercial sanitizers. Food Microbiol 17:439–447

    CAS  Google Scholar 

  • Singh S, Kate BN, Banerjee U (2005) Bioactive compounds from cyanobacteria and microalgae: an overview. Cr Rev Biotechn 25:73–95

    CAS  Google Scholar 

  • Sirmerova M, Prochazkova G, Siristova L, Kolska Z, Branyik T (2013) Adhesion of Chlorella vulgaris to solid surfaces, as mediated by physicochemical interactions. J Appl Phycol 25:1687–1695

    CAS  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    CAS  PubMed  Google Scholar 

  • Stanley MS, Callow JA (2007) Whole cell adhesion strength of morphotypes and isolates of Phaeodactylum tricornutum (Bacillariophyceae). Eur J Phycol 42:191–197

    CAS  Google Scholar 

  • Stauber J, Florence T (1987) Mechanism of toxicity of ionic copper and copper complexes to algae. Mar Biol 94:511–519

    CAS  Google Scholar 

  • Stewart EA, Zivojnovich MJ (2003) Apparatus and method for harvesting and collecting attached algal communities. US patent 6572770B1

  • Teixeira P, Oliveira R (1999) Influence of surface characteristics on the adhesion of Alcaligenes denitrificans to polymeric substrates. J Adhes Sci Technol 13:1287–1294

    CAS  Google Scholar 

  • Teixeira P, Lopes Z, Azeredo J, Oliveira R, Vieira MJ (2005) Physico-chemical surface characterization of a bacterial population isolated from a milking machine. Food Microbiol 22:247–251

    CAS  Google Scholar 

  • Trevors J, Cotter C (1990) Copper toxicity and uptake in microorganisms. J Ind Microbiol 6:77–84

    CAS  Google Scholar 

  • Van Leeuwen HP (1999) Metal speciation dynamics and bioavailability: inert and labile complexes. Environ Sci Technol 33:3743–3748

    Google Scholar 

  • Van Oss C (1995) Hydrophobicity of biosurfaces - origin, quantitative determination and interaction energies. Colloids Surf B 5:91–110

    Google Scholar 

  • Van Oss C (2005) Interfacial forces in aqueous media. Marcel Decker Inc, New York

    Google Scholar 

  • Van Oss CJ (2006) Interfacial forces in aqueous media. CRC Press, Boca Raton

    Google Scholar 

  • Van Oss C, Chaudhury M, Good R (1987) Monopolar surfaces. Adv Colloid Interfac 28:35–64

    Google Scholar 

  • Van Oss C, Good R, Chaudhury M (1988) Additive and nonadditive surface tension components and the interpretation of contact angles. Langmuir 4:884–891

    Google Scholar 

  • Van Oss C, Ju L, Chaudhury M, Good R (1989) Estimation of the polar parameters of the surface tension of liquids by contact angle measurements on gels. J Colloid Int Sci 128:313–319

    Google Scholar 

  • Visser J (1995) Particle adhesion and removal: a review. Particul Sci Technol 13:169–196

    CAS  Google Scholar 

  • Wang M, Kuo-Dahab WC, Dolan S, Park C (2014) Kinetics of nutrient removal and expression of extracellular polymeric substances of the microalgae, Chlorella sp. and Micractinium sp., in wastewater treatment. BioresourTechnol 154:131–137

    CAS  Google Scholar 

  • Wilkie AC, Mulbry WW (2002) Recovery of dairy manure nutrients by benthic freshwater algae. Bioresour Technol 84:81–91

    CAS  PubMed  Google Scholar 

  • Wilson S, Hamilton MA, Hamilton GC, Schumann MR, Stoodley P (2004) Statistical quantification of detachment rates and size distributions of cell clumps from wild-type (PAO1) and cell signaling mutant (JP1) Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 70:5847–5852

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wuertz S, Bishop PL, Wilderer PA (2003) Biofilms in wastewater treatment: an interdisciplinary approach. IWA Publishing London, UK

    Google Scholar 

  • Wurdack ME (1923) Chemical composition of the walls of certain algae. Ohio J Sci 28:181–191

  • Yang Y, Gao K (2003) Effects of CO2 concentrations on the freshwater microalgae, Chlamydomonas reinhardtii, Chlorella pyrenoidosa and Scenedesmus obliquus (Chlorophyta). J Appl Phycol 15:379–389

    CAS  Google Scholar 

  • Zhang T, Fang HH (2001) Quantification of extracellular polymeric substances in biofilms by confocal laser scanning microscopy. Biotechnol Lett 23:405–409

    CAS  Google Scholar 

Download references

Acknowledgements

This work was the result of the projects: POCI-01-0145-FEDER-030219; POCI-01-0145-FEDER-006939 (Laboratory for Process Engineering, Environment, Biotechnology and Energy - UID/EQU/00511/2013) funded by the European Regional Development Fund (ERDF), through COMPETE2020 – Programa Operacional Competitividade e Internacionalização (POCI) and by national funds, through FCT - Fundação para a Ciência e a Tecnologia; NORTE-01-0145-FEDER-000005 - LEPABE-2-ECO-INNOVATION, supported by North Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDF); SFRH/BD/88799/2012; 0302_CVMAR_I_1_P..

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Simões.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barros, A.C., Gonçalves, A.L. & Simões, M. Microalgal/cyanobacterial biofilm formation on selected surfaces: the effects of surface physicochemical properties and culture media composition. J Appl Phycol 31, 375–387 (2019). https://doi.org/10.1007/s10811-018-1582-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-018-1582-3

Keywords

  • Adhesion
  • Biofilms
  • Cyanobacteria
  • Media composition
  • Microalgae
  • Surface physicochemical properties