Skip to main content

Advertisement

Log in

Effects of Xanthophyllomyces dendrorhous on cell growth, lipid, and astaxanthin production of Chromochloris zofingiensis by mixed culture strategy

  • 8th Asian Pacific Phycological Forum
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The alga Chromochloris zofingiensis and the yeast Xanthophyllomyces dendrorhous are typical microorganisms which can accumulate high-value astaxanthin and lipid simultaneously. This study investigated the synergistic effects of X. dendrorhous on the cell growth, lipid, and astaxanthin production of C. zofingiensis by a mixed culture approach. Compared to the pure culture of C. zofingiensis, enhanced lipid and astaxanthin production were obtained in the mixed culture. The maximum astaxanthin and lipid yield achieved in the mixed culture with the ratio of 3:1 (algae to yeast) were 5.50 mg L−1 and 2.37 g L−1, respectively, which were 1.10- and 2.72-fold that of C. zofingiensis monoculture. Additionally, lipid obtained from the mixed culture had a plant oil-like fatty acid composition. This study provides a new insight into the integration of natural astaxanthin production with microbial lipid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Ambati RR, Phang SM, Ravi S, Aswathanarayana RG (2014) Astaxanthin: sources, extraction, stability, biological activities and its commercial applications-a review. Mar Drugs 12:128–152

    Article  Google Scholar 

  • Bar E, Rise M, Vishkautsan M, Arad S (1995) Pigment and structural changes in Chlorella zofingiensis upon light and nitrogen stress. J Plant Physiol 146(4):527–534

    Article  CAS  Google Scholar 

  • Bhosale P, Gadre RV (2001) β-Carotene production in sugarcane molasses by a Rhodotorula glutinis mutant. J Ind Microbiol Biotechnol 26:327–332

    Article  CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Physiol Pharmacol 37:911–917

    CAS  Google Scholar 

  • Borowitzka MA (2016) Algal physiology and large-scale outdoor cultures of microalgae. In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Dordrecht, pp 601–652

    Chapter  Google Scholar 

  • Borowitzka MA, Huisman JM, Osborn A (1991) Culture of the astaxanthin-producing green alga Haematococcus pluvialis 1. Effects of nutrients on growth and cell type. J Appl Phycol 3:295–304

    Article  CAS  Google Scholar 

  • Boussiba S (2000) Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response. Physiol Plant 108:111–117

    Article  CAS  Google Scholar 

  • Cai S, Hu C, Du S (2007) Comparisons of growth and biochemical composition between mixed culture of alga and yeast and monocultures. J Biosci Bioeng 104:391–397

    Article  CAS  Google Scholar 

  • Cheirsilp B, Kitcha S, Torpee S (2011) Co-culture of an oleaginous yeast Rhodotorula glutinis and a microalga Chlorella vulgaris for biomass and lipid production using pure and crude glycerol as a sole carbon source. Ann Microbiol 62:987–993

    Article  Google Scholar 

  • Chen J, Wei D, Pohnert G (2017) Rapid estimation of astaxanthin and the carotenoid-to-chlorophyll ratio in the green microalga Chromochloris zofingiensis using flow cytometry. Mar Drugs 15(7):E231

    Article  Google Scholar 

  • Dominguez-Bocanegra A, Ponce-Noyola T, Torres-Munoz J (2007) Astaxanthin production by Phaffia rhodozyma and Haematococcus pluvialis: a comparative study. Appl Microbiol Biotechnol 75:783–791

    Article  CAS  Google Scholar 

  • Dong Q-L, Zhao X-M (2004) In situ carbon dioxide fixation in the process of natural astaxanthin production by a mixed culture of Haematococcus pluvialis and Phaffia rhodozyma. Catal Today 98:537–544

    Article  CAS  Google Scholar 

  • Guschina IA, Harwood JL (2013) Algal lipids and their metabolism. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 17–36

    Chapter  Google Scholar 

  • Ip P-F, Wong K-H, Chen F (2004) Enhanced production of astaxanthin by the green microalga Chlorella zofingiensis in mixotrophic culture. Process Biochem 39:1761–1766

    Article  CAS  Google Scholar 

  • Johnson EA, Lewis MJ (1979) Astaxanthin formation by the yeast Phaffia rhodozyma. J Gen Microbiol 115:173–183

    Article  CAS  Google Scholar 

  • Kim D-Y, Vijayan D, Praveenkumar R, Han J-I, Lee K, Park J-Y, Chang W-S, Lee J-S, Oh Y-K (2016) Cell-wall disruption and lipid/astaxanthin extraction from microalgae: Chlorella and Haematococcus. Bioresour Technol 199:300–310

    Article  CAS  Google Scholar 

  • Knothe G (2013) Production and properties of biodiesel from algal oils. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 207–221

    Chapter  Google Scholar 

  • Li Y, Zhao Z, Bai F (2007) High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzym Microb Technol 41:312–317

    Article  Google Scholar 

  • Liu J, Sun Z, Gerken H, Liu Z, Jiang Y, Chen F (2014) Chlorella zofingiensis as an alternative microalgal producer of astaxanthin: biology and industrial potential. Mar Drugs 12:3487–3515

    Article  Google Scholar 

  • Liu JS, Z.; Zhong, Y., Gerken H, Huang J, Chen F (2013) Utilization of cane molasses towards cost-saving astaxanthin production by a Chlorella zofingiensis mutant. J Appl Phycol 25:1447–1456

    Article  Google Scholar 

  • Liu L, Chen J, Lim P-E, Wei D (2018) Dual-species cultivation of microalgae and yeast for enhanced biomass and microbial lipid production. J Appl Phycol. https://doi.org/10.1007/s10811-018-1526-y

    Article  CAS  Google Scholar 

  • Lu N, Wei D, Jiang X-L, Chen F, Yang S-T (2012) Fatty acids profiling and biomarker identification in snow alga Chlamydomonas nivalis by NaCl stress using GC/MS and multivariate statistical analysis. Anal Lett 45:1172–1183

    Article  CAS  Google Scholar 

  • Mendoza H, Martel A, Jiménez del Río M, García Reina G (1999) Oleic acid is the main fatty acid related with carotenogenesis in Dunaliella salina. J Appl Phycol 11:15–19

    Article  CAS  Google Scholar 

  • Mulders KJM, Janssen JH, Martens DE, Wijffels RH, Lamers PP (2014) Effect of biomass concentration on secondary carotenoids and triacylglycerol (TAG) accumulation in nitrogen-depleted Chlorella zofingiensis. Algal Res 6, Part A:8–16

    Article  Google Scholar 

  • Nichols HW, Bold HC (1965) Trichosarcina polymorpha gen. et. sp. nov. J Phycol 1:34–38

    Article  Google Scholar 

  • Olguín EJ, Olguín EJ, Giuliano G, Porro D, Tuberosa R, Salamini F (2012) Dual purpose microalgae-bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a biorefinery. Biotechnol Adv 30:1031–1046

    Article  Google Scholar 

  • Osterlie M, Bjerkeng B, Liaaen-Jensen S (1999) Accumulation of astaxanthin all-E, 9Z and 13Z geometrical isomers and 3 and 3' RS optical isomers in rainbow trout (Oncorhynchus mykiss) is selective. J Nutr 129:391–398

    Article  CAS  Google Scholar 

  • Peng H, Wei D, Chen F, Chen G (2015) Regulation of carbon metabolic fluxes in response to CO2 supplementation in phototrophic Chlorella vulgaris: a cytomic and biochemical study. J Appl Phycol 28:737–745

    Article  Google Scholar 

  • Qin L, Liu L, Wang Z, Chen W, Wei D (2018) Efficient resource recycling from liquid digestate by microalgae-yeast mixed culture and the assessment of key gene transcription related to nitrogen assimilation in microalgae. Bioresour Technol 264:90–97

    Article  CAS  Google Scholar 

  • Sanderson GW, Jolly SO (1994) The value of Phaffia yeast as a feed ingredient for salmonid fish. Aquaculture 124:193–200

    Article  Google Scholar 

  • Santos CA, Reis A (2014) Microalgal symbiosis in biotechnology. Appl Microbiol Biotechnol 98:5839–5846

    Article  CAS  Google Scholar 

  • Solovchenko AE (2012) Physiological role of neutral lipid accumulation in eukaryotic microalgae under stress. Russ J Plant Physiol 59:167–176

    Article  CAS  Google Scholar 

  • Sun N, Wang Y, Li Y-T, Huang J-C, Chen F (2008) Sugar-based growth, astaxanthin accumulation and carotenogenic transcription of heterotrophic Chlorella zofingiensis (Chlorophyta). Process Biochem 43:1288–1292

    Article  CAS  Google Scholar 

  • Vaquez M, Martin AM (1998) Optimization of Phaffia rhodozyma continuous culture through response surface methodology. Biotechnol Bioeng 57:314–320

    Article  Google Scholar 

  • Xue F, Miao J, Zhang X, Tan T (2010) A new strategy for lipid production by mix cultivation of Spirulina platensis and Rhodotorula glutinis. Appl Biochem Biotechnol 160:498–503

    Article  CAS  Google Scholar 

  • Yen HW, Chen PW, Chen LJ (2015) The synergistic effects for the co-cultivation of oleaginous yeast-Rhodotorula glutinis and microalgae-Scenedesmus obliquus on the biomass and total lipids accumulation. Bioresour Technol 184:148–152

    Article  CAS  Google Scholar 

  • Zhang K, Zheng J, Xue D, Ren D, Lu J (2017a) Effect of photoautotrophic and heteroautotrophic conditions on growth and lipid production in Chlorella vulgaris cultured in industrial wastewater with the yeast Rhodotorula glutinis. J Appl Phycol 29:2783–2788

    Article  CAS  Google Scholar 

  • Zhang Z, Huang JJ, Sun D, Lee Y, Chen F (2017b) Two-step cultivation for production of astaxanthin in Chlorella zofingiensis using a patented energy-free rotating floating photobioreactor (RFP). Bioresour Technol 224:515–522

    Article  CAS  Google Scholar 

  • Zhang Z, Ji H, Gong G, Zhang X, Tan T (2014) Synergistic effects of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for enhancement of biomass and lipid yields. Bioresour Technol 164:93–99

    Article  CAS  Google Scholar 

  • Zhang Z, Sun D, Mao X, Liu J, Chen F (2016) The crosstalk between astaxanthin, fatty acids and reactive oxygen species in heterotrophic Chlorella zofingiensis. Algal Res 19:178–183

    Article  Google Scholar 

  • Zhekisheva M, Boussiba S, Khozina-Goldberg I, Zarka A, Cohen Z (2002) Accumulation of oleic acid in Haematococcus pluvialis (Chlorophyceae) under nitrogen starvation or high light is correlated with that of astaxanthin esters. J Phycol 38:325–331

    Article  CAS  Google Scholar 

  • Zhekisheva M, Zarka A, Khozin-Goldberg I, Cohen Z, Boussiba S (2005) Inhibition of astaxanthin synthesis under high irradiance does not abolish triacylglycerol accumulation in the green alga Haematococcus pluvialis (Chlorophyceae). J Phycol 41:819–826

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the Science and Technology Program of Guangdong (Grant nos. 2016A010105001 and 2015A20216003), the Sciences and Technology of Guangzhou (Grant no. 201704030084), the Science and Technology Program in Marine and Fishery of Guangdong (Grant no. A201401C01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Liu, L., Chen, J. et al. Effects of Xanthophyllomyces dendrorhous on cell growth, lipid, and astaxanthin production of Chromochloris zofingiensis by mixed culture strategy. J Appl Phycol 30, 3009–3015 (2018). https://doi.org/10.1007/s10811-018-1553-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-018-1553-8

Keywords