Journal of Applied Phycology

, Volume 30, Issue 6, pp 3167–3177 | Cite as

Intrageneric chloroplast genome comparison in the genus Euglena (Phylum: Euglenophyta) with annotated chloroplast genomes of Euglena hiemalis and Euglena clara

  • Madhavi Ellala Hewadikaramge
  • Eric LintonEmail author
8th Asian Pacific Phycological Forum


The genus Euglena is composed of six subclades with a diversity of chloroplast morphologies, unlike that found in the other genera of Euglenaceae. This genus contains five published chloroplast genomes (cpGenome) and the colorless plastid genome (ptGenome) of the non-photosynthetic euglenoid Euglena longa within the same subclade as Euglena gracilis. Previous studies of cpGenomes revealed that Euglena viridis and E. gracilis, although in separate subclades, had few cpGenome differences, while Euglena mutabilis maintained the same gene order but was mirror-inverted except for the rRNA cluster. However, we expanded the number of cpGenomes available in Euglena by sequencing and annotating the cpGenomes of Euglena clara, the earliest diverging species in the E. gracilis and E. longa subclade and Euglena hiemalis, the putative sister species to E. longa. Analysis of these newly annotated cpGenomes showed them to be largely similar in gene content, conserved gene clusters (operons), and G + C/A + T percentage to previously published Euglena cpGenomes. The only extensive gene rearrangements observed were between cpGenomes and the ptGenome in subclade B. However, a unique feature of the subclade was multi-copies of the rRNA operon. Also, homologous twintrons in psbD and psbF to E. gracilis were observed in E. hiemalis. Overall, these results revealed a conserved intrageneric cpGenome for Euglena species.


Chloroplast genomes Comparative genomics Euglenophyta Euglenophyceae Euglena hiemalis Euglena clara 



The authors acknowledge financial support from the National Science Foundation Microbial Genomics Program (grant no. MCB-0629233) and from Central Michigan Universities’ Faculty Research and Creative Endeavors (grant no. 48898).

Supplementary material

10811_2018_1547_MOESM1_ESM.docx (14 kb)
Table S1 (DOCX 14 kb)
10811_2018_1547_MOESM2_ESM.docx (15 kb)
Table S2 (DOCX 14 kb)
10811_2018_1547_MOESM3_ESM.docx (16 kb)
Table S3 (DOCX 16 kb)


  1. Bennett MS, Triemer RE (2015) Chloroplast genome evolution in the Euglenaceae. J Eukaryot Microbiol 62:773–785PubMedCrossRefGoogle Scholar
  2. Bennett MS, Wiegert KE, Triemer RE (2012) Comparative chloroplast genomics between Euglena viridis and Euglena gracilis (Euglenophyta). Phycologia 51:711–718CrossRefGoogle Scholar
  3. Bennett MS, Wiegert KE, Triemer RE (2014) Characterization of Euglenaformis gen. nov. and the chloroplast genome of Euglenaformis [Euglena] proxima (Euglenophyta). Phycologia 53:66–73CrossRefGoogle Scholar
  4. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580PubMedPubMedCentralCrossRefGoogle Scholar
  5. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST: architecture and applications. BMC Bioinformatics 10:421PubMedPubMedCentralCrossRefGoogle Scholar
  6. Christopher DA, Hallick RB (1989) Euglena gracilis chloroplast ribosomal protein operon: a new chloroplast gene for ribosomal protein L5 and description of a novel organelle intron category designated group III. Nucleic Acids Res 17:7591–7608PubMedPubMedCentralCrossRefGoogle Scholar
  7. Ciugulea I, Triemer RE (2010) A color atlas of photosynthetic Euglenoids, 1st edn. Michigan State University Press, East Lansing 220–241ppGoogle Scholar
  8. Ciugulea I, Nudelman MA, Brosnan S, Triemer RE (2008) Phylogeny of the euglenoid loricate genera Trachelomonas and Strombomonas (Euglenophyta) inferred from nuclear SSU and LSU rDNA. J Phycol 44:406–418PubMedCrossRefGoogle Scholar
  9. Conant GC, Wolfe KH (2007) GenomeVx: simple web-based creation of editable circular chromosome maps. Bioinformatics 24:861–862CrossRefGoogle Scholar
  10. Copertino DW, Hallick RB (1991) Group II twintron: an intron within an intron in a chloroplaast cytochrome b-559 gene. EMBO J 10:433–442PubMedPubMedCentralCrossRefGoogle Scholar
  11. Dabbagh N, Preisfeld A (2017) The chloroplast genome of Euglena mutabilis—cluster arrangement, intron analysis, and intrageneric trends. Eukaryot Microbiol 64:31–44CrossRefGoogle Scholar
  12. Darling ACE, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403PubMedPubMedCentralCrossRefGoogle Scholar
  13. Gibbs SP (1978) The chloroplasts of Euglena may have evolved from symbiotic green algae. Can J Bot 56:2883–2889CrossRefGoogle Scholar
  14. Gibbs SP (1981) The chloroplasts of some algal groups may have evolved from endosymbiotic eukaryotic algae. Ann N Y Acad Sci 361:193–208PubMedCrossRefGoogle Scholar
  15. Gockel G, Hachtel W (2000) Complete gene map of the plastid genome of the nonphotosynthetic euglenoid flagellate Astasia longa. Protist 151:347–351PubMedCrossRefGoogle Scholar
  16. Hallick RB, Hong L, Drager RG, Favreau MR, Monfort A, Orsat B, Spielmann A, Stutz E (1993) Complete sequence of Euglena gracilis chloroplast DNA. Nucleic Acids Res 21:3537–3544PubMedPubMedCentralCrossRefGoogle Scholar
  17. Hampl V, Hug L, Leigh JW, Dacks JB, Lang BF, Simpson AGB, Roger AJ (2009) Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups”. Proc Natl Acad Sci U S A 106:3859–3864PubMedPubMedCentralCrossRefGoogle Scholar
  18. Hrdá Š, Fousek J, Szabová J, Hampl V, Vlček Č (2012) The plastid genome of Eutreptiella provides a window into the process of secondary endosymbiosis of plastid in euglenids. PLoS One 7:e33746PubMedPubMedCentralCrossRefGoogle Scholar
  19. Karnkowska A, Bennett MS, Watza D, Kim JI, Zakrys B, Triemer RE (2015) Phylogenetic relationship and morphological character evolution of photosynthetic euglenids (Excavata) inferred from taxon-rich analyses of five genes. J Eukaryot Microbiol 62:362–373PubMedCrossRefGoogle Scholar
  20. Kasiborski BA, Bennett MS, Linton EW (2016) The chloroplast genome of Phacus orbicularis (Euglenophyceae): an initial datum point for the Phacaceae. J Phycol 52:404–411PubMedCrossRefGoogle Scholar
  21. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Mentjies P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649PubMedPubMedCentralCrossRefGoogle Scholar
  22. Kim JI, Shin W (2008) Phylogeny of the Euglenales inferred from plastid LSU rDNA sequences. J Phycol 44:994–1000PubMedCrossRefGoogle Scholar
  23. Kim JI, Shin W (2014) Molecular Phylogeny and Cryptic Diversity of the Genus (Phacaceae, Euglenophyceae) and the Descriptions of Seven New Species. J Phycol 50(5):948–959PubMedCrossRefGoogle Scholar
  24. Kim JI, Shin W, Triemer RE (2010) Multigene analyses of photosynthetic euglenoids and new family, Phacaceae (Euglenales). J Phycol 46:1278–1287CrossRefGoogle Scholar
  25. Kim JI, Linton EW, Shin W (2015) Taxon-rich multigene phylogeny of the photosynthetic euglenoids (Euglenophyceae). Front Ecol Evol 3:98Google Scholar
  26. Kim JI, Linton EW, Shin W (2016) Morphological and genetic diversity of Euglena deses group (Euglenophyceae) with emphasis on cryptic species. Algae 31:219–230CrossRefGoogle Scholar
  27. Lagesen K, Hallin P, Rødland EA, Stærfeldt H, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108PubMedPubMedCentralCrossRefGoogle Scholar
  28. Leedale GF (1967) Euglenoid flagellates. Prentice Hall, Englewood CliffsGoogle Scholar
  29. Leedale GF (1971) The Euglenoids. In: Head JJ, Lowenstein OE (eds) Oxford biology readers, vol 5. Oxford Univ. Press, LondonGoogle Scholar
  30. Linton EW, Hittner D, Lewandowski C, Auld T, Triemer RE (1999) A molecular study of euglenoid phylogeny using small subunit rDNA. J Eukaryot Microbiol 46:217–223PubMedCrossRefGoogle Scholar
  31. Linton EW, Nudelman MA, Conforti V, Triemer RE (2000) A molecular analysis of the euglenophytes using SSU rDNA. J Phycol 36:740–746PubMedCrossRefGoogle Scholar
  32. Linton EW, Karnkowska-Ishikawa A, Kim JI, Shin W, Bennett MS, Kwiatowski J, Zakryś B, Triemer RE (2010) Reconstructing euglenoid evolutionary relationships using three genes: nuclear SSU and LSU, and chloroplast SSU rDNA sequences and the description of Euglenaria gen. nov. (Euglenophyta). Protist 161:603–619PubMedCrossRefGoogle Scholar
  33. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964PubMedPubMedCentralCrossRefGoogle Scholar
  34. Marin B, Palm A, Klingberg M, Melkonian M (2003) Phylogeny and taxonomic revision of plastid-containing euglenophytes based on SSU rDNA sequence comparisons and synapomorphic signatures in the SSU rRNA secondary structure. Protist 154:99–145PubMedCrossRefGoogle Scholar
  35. Matvienko AM (1938) Contribution to the study of the algae of the UKR. SSR. I. Algae of the sphagnum-swamp “Klukvennoye”. Proc Kharkov State Univ 14:29–70Google Scholar
  36. Milne I, Bayer M, Cardle L, Shaw P, Stephen G, Wright F, Marshall D (2010) Tablet—next generation sequence assembly visualization. Bioinformatics 26:401–402PubMedCrossRefGoogle Scholar
  37. Montegut-Felkner AE, Triemer RE (1997) Phylogenetic relationships of selected euglenoid genera based on morphological and molecular data. J Phycol 33:512–519CrossRefGoogle Scholar
  38. Muchhal US, Schwartzbach SD (1994) Characterization of the unique intron–exon junctions of Euglena gene(s) encoding the polyprotein precursor to the light-harvesting chlorophyll a/b binding protein of photosystem II. Nucleic Acids Res 22:5737–5744PubMedPubMedCentralCrossRefGoogle Scholar
  39. Nawrocki EP, Burge SW, Bateman A, Daub J, Eberhardt RY, Eddy SR, Finn RD (2015) Rfam 12.0: updates to the RNA families database. Nucleic Acids Res 43:D130–D137PubMedCrossRefGoogle Scholar
  40. Pombert JF, James ER, Janouškovec J, Keeling PJ (2012) Evidence for transitional stages in the evolution of euglenid group II introns and twintrons in the Monomorphina aenigmatica plastid genome. PLoS One 7:e53433PubMedPubMedCentralCrossRefGoogle Scholar
  41. Skuja H (1948) Taxonomie des Phytoplanktons einiger Seen in Uppland, Schweden. Symbolae Botanicae Upsalienses 9:1–399Google Scholar
  42. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729PubMedPubMedCentralCrossRefGoogle Scholar
  43. Triemer RE, Linton E, Shin W, Nudelman A, Monfils A, Bennette M, Brosnan S (2006) Phylogeny of the Euglenales based upon combined SSU and LSU rDNA sequence comparisons and description of Discoplastis gen. nov. (Euglenophyta). J Phycol 42:731–740CrossRefGoogle Scholar
  44. Turmel M, Gagnon M-C, O’Kelly CJ, Otis C, Lemieux C (2009) The chloroplast genomes of the green algae Pyramimonas, Monomastix, and Pycnococcus shed new light on the evolutionary history of prasinophytes and the origin of the secondary chloroplasts of euglenids. Mol Biol Evol 26:631–648PubMedCrossRefGoogle Scholar
  45. Watanabe M M, Kawachi M, Hiroki M, Kasai F (2000) NIES collection list of strains, 6th edn. National Institute for Environmental Studies, Tsukuba. 159 pp.Google Scholar
  46. Wiegert KE, Bennett MS, Triemer RE (2012) Evolution of the chloroplast genome in photosynthetic euglenoids: a comparison of Eutreptia viridis and Euglena gracilis (Euglenophyta). Protist 163:832–843PubMedCrossRefGoogle Scholar
  47. Wiegert KE, Bennett MS, Triemer RE (2013) Tracing patterns of chloroplast evolution in euglenoids: contributions from Colacium vesiculosum and Strombomonas acuminata (Euglenophyta). J Eukaryot Microbiol 60:214–221PubMedCrossRefGoogle Scholar
  48. Wyman SK, Jansen RK, Boore JL (2004) Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20:3252–3255PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of BiologyCentral Michigan UniversityMt PleasantUSA
  2. 2.NittabuwaSri Lanka

Personalised recommendations