Acclimation responses of immobilized N2-fixing heterocystous cyanobacteria to long-term H2 photoproduction conditions: carbon allocation, oxidative stress and carotenoid production

Abstract

This study investigates the acclimation of N2-fixing heterocystous cyanobacteria to long-term H2 photoproduction. Wild-type Calothrix sp. 336/3, Anabaena sp. PCC 7120, and the uptake hydrogenase-deficient mutant (ΔhupL) of Anabaena sp. PCC 7120 were entrapped within Ca2+-alginate films and subjected to an argon (Ar) atmosphere containing 6% CO2. Every third day, the atmosphere was changed to Ar + 6% CO2 (control), and air or air + 6% CO2. The air treatments were performed to recover the C/N balance of cells and restore their fitness. After 16–20 h of treatment, the headspace of all vials was again refreshed with Ar + 6% CO2. Cyanobacteria demonstrated strain-specific differences in carbon allocation and antioxidant responses to different treatments. While glycogen accumulation was observed for both Anabaena strains, Calothrix accumulated significantly less. Instead, Calothrix stored other carbohydrates, likely as extracellular polymeric substances (EPS). All alginate-entrapped cultures demonstrated general increases in oxidative stress over the course of the 450-h experiment. However, specific responses differed, with Calothrix accumulating higher total carotenoid and α-tocopherol levels and demonstrating a more diverse carotenoid profile. This strain also showed a relatively stable D1 protein level across different treatments. In general, all H2-photoproducing cyanobacteria demonstrated decreases in echinenone content and a shift toward the accumulation of glycosylated carotenoids: myxol 2′-methylpentoside (likely fucoside) in Calothrix and 4-ketomyxol 2′-fucoside in both Anabaena strains. Thus, long-term H2 photoproduction of immobilized cyanobacteria results in strain-specific acclimation strategies for changing environments.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. BCC Research (2015) The global market for carotenoids. Retrieved from https://www.bccresearch.com/market-research/food-and-beverage/carotenoids-global-market-report-fod025e.html in December 2017

  2. Berglund AH, Nilsson R, Liljenberg C (1999) Permeability of large unilamellar digalactosyldiacylglycerol vesicles for protons and glucose—influence of α-tocopherol, β-carotene, zeaxanthin and cholesterol. Plant Physiol Biochem 37:179–186

    CAS  Article  Google Scholar 

  3. Bothe H, Tennigkeit J, Eisbrenner G (1977) The utilization of molecular hydrogen by the blue-green alga Anabaena cylindrica. Arch Microbiol 114:43–49

    CAS  Article  Google Scholar 

  4. Bothe H, Schmitz O, Yates MG, Newton WE (2010) Nitrogen fixation and hydrogen metabolism in cyanobacteria. Microbiol Mol Biol Rev 74:529–551

    CAS  Article  Google Scholar 

  5. Carrieri D, Wawrousek K, Eckert C, Yu J, Maness P-C (2011) The role of the bidirectional hydrogenase in cyanobacteria. Bioresour Technol 102:8368–8377

    CAS  Article  Google Scholar 

  6. Cerezo J, Zúñiga J, Bastida A, Requena A, Cerón-Carrasco JP, Eriksson LA (2012) Antioxidant properties of β-carotene isomers and their role in photosystems: insights from ab initio simulations. J Phys Chem A 116:3498–3506

    CAS  Article  Google Scholar 

  7. Curatti L, Flores E, Salerno G (2002) Sucrose is involved in the diazotrophic metabolism of the heterocyst-forming cyanobacterium Anabaena sp. FEBS Lett 513:175–178

    CAS  Article  Google Scholar 

  8. Domonkos I, Kis M, Gombos Z, Ughy B (2013) Carotenoids, versatile components of oxygenic photosynthesis. Prog Lipid Res 52:539–561

    CAS  Article  Google Scholar 

  9. Dutta D, De D, Chaudhuri S, Bhattacharya SK (2005) Hydrogen production by Cyanobacteria. Microb Cell Factories 4:36

    Article  Google Scholar 

  10. Esteves-Ferreira AA, Cavalcanti JHF, Vaz MGMV, Alvarenga LV, Nunes-Nesi A, Araújo WL (2017) Cyanobacterial nitrogenases: phylogenetic diversity, regulation and functional predictions. Genet Mol Biol 40:261–275

    CAS  Article  Google Scholar 

  11. Fay P (1992) Oxygen relations of nitrogen fixation in cyanobacteria. Microbiol Rev 56:340–373

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hai T, Hein S, Steinbu CA (2001) Multiple evidence for widespread and general occurrence of type-III PHA synthases in cyanobacteria and molecular characterization of the PHA synthases from two thermophilic cyanobacteria: Chlorogloeopsis fritschii PCC 6912 and Synechococcus sp. strain MA19. Microbiology 147:3047–3060

    CAS  Article  Google Scholar 

  13. Hassett DJ (1996) Anaerobic production of alginate by Pseudomonas aeruginosa: alginate restricts diffusion of oxygen. J Bacteriol 178:7322–7325

    CAS  Article  Google Scholar 

  14. Hasunuma T, Kikuyama F, Matsuda M, Aikawa S, Izumi Y, Kondo A (2013) Dynamic metabolic profiling of cyanobacterial glycogen biosynthesis under conditions of nitrate depletion. J Exp Bot 64:2943–2954

    CAS  Article  Google Scholar 

  15. Hinnemann B, Norskov JK (2006) Catalysis by enzymes: the biological ammonia synthesis. Top Catal 37:55–70

    CAS  Article  Google Scholar 

  16. Ibañez E, Cifuentes A (2013) Benefits of using algae as natural sources of functional ingredients. J Sci Food Agric 93:703–709

    Article  Google Scholar 

  17. Inoue S, Ejima K, Iwai E, Hayashi H, Appel J, Tyystjärvi E, Murata N, Nishiyama Y (2011) Protection by α-tocopherol of the repair of photosystem II during photoinhibition in Synechocystis sp. PCC 6803. Biochim Biophys Acta Bioenerg 1807:236–241

    CAS  Article  Google Scholar 

  18. Jämsä M, Kosourov S, Rissanen V, Hakalahti M, Pere J, Ketoja JA, Tammelin T, Allahverdiyeva Y (2018) Versatile templates from cellulose nanofibrils for photosynthetic microbial biofuel production. J Mater Chem A 6:5825–5835

    Article  Google Scholar 

  19. Kerfeld CA (2004) Structure and function of the water-soluble carotenoid-binding proteins of cyanobacteria. Photosynth Res 81:215–225

    CAS  Article  Google Scholar 

  20. Knoll AH (2008) Cyanobacteria and earth history. In: Herrero A, Flores E (eds) The cyanobacteria: molecular biology, genomics and evolution. Caister Academic, Norfolk, UK, pp 1–19

    Google Scholar 

  21. Kosourov SN, Seibert M (2009) Hydrogen photoproduction by nutrient-deprived Chlamydomonas reinhardtii cells immobilized within thin alginate films under aerobic and anaerobic conditions. Biotechnol Bioeng 102:50–58

    CAS  Article  Google Scholar 

  22. Kosourov S, Leino H, Murukesan G, Lynch F, Sivonen K, Tsygankov AA, Aro EM, Allahverdiyeva Y (2014) Hydrogen photoproduction by immobilized N2-fixing cyanobacteria: understanding the role of the uptake hydrogenase in the long-term process. Appl Environ Microbiol 80:5807–5817

    CAS  Article  Google Scholar 

  23. Kosourov SN, Murukesan G, Jokela J, Allahverdiyeva Y (2016) Carotenoid biosynthesis in Calothrix sp. 336/3: composition of carotenoids on full medium, during diazotrophic growth and after long-term H2 photoproduction. Plant Cell Physiol 57:2269–2282

    CAS  Article  Google Scholar 

  24. Kosourov S, Murukesan G, Seibert M, Allahverdiyeva Y (2017) Evaluation of light energy to H2 energy conversion efficiency in thin films of cyanobacteria and green alga under photoautotrophic conditions. Algal Res 28:253–263

    Article  Google Scholar 

  25. Kosourov SN, He M, Allahverdiyeva Y, Seibert M (2018) CHAPTER 15. Immobilization of microalgae as a tool for efficient light utilization in H2 production and other biotechnology applications. In: Seibert M, Torzillo G (eds) Microalgal hydrogen production: achievements and perspectives. The Royal Society of Chemistry, London, pp 355–384

    Google Scholar 

  26. Kótai J (1972) Instructions for preparation of modified nutrient solution Z8 for algae. NIVA B-11/69

  27. Kusama Y, Inoue S, Jimbo H, Takaichi S, Sonoike K, Hihara Y, Nishiyama Y (2015) Zeaxanthin and echinenone protect the repair of photosystem II from inhibition by singlet oxygen in Synechocystis sp. PCC 6803. Plant Cell Physiol 56:906–916

    CAS  Article  Google Scholar 

  28. Latifi A, Ruiz M, Zhang CC (2009) Oxidative stress in cyanobacteria. FEMS Microbiol Rev 33:258–278

    CAS  Article  Google Scholar 

  29. Leino H, Kosourov SN, Saari L, Sivonen K, Tsygankov AA, Aro E-M, Allahverdiyeva Y (2012) Extended H2 photoproduction by N2-fixing cyanobacteria immobilized in thin alginate films. Int J Hydrog Energy 37:151–161

    CAS  Article  Google Scholar 

  30. Leino H, Shunmugam S, Isojärvi J, Oliveira P, Mulo P, Saari L, Battchikova N, Sivonen K, Lindblad P, Aro E-M, Allahverdiyeva Y (2014) Characterization of ten H2 producing cyanobacteria isolated from the Baltic Sea and Finnish lakes. Int J Hydrog Energy 39:8983–8991

    CAS  Article  Google Scholar 

  31. Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    CAS  Article  Google Scholar 

  32. Maksimov EG, Shirshin EA, Sluchanko NN, Zlenko DV, Parshina EY, Tsoraev GV, Klementiev KE, Budylin GS, Schmitt FJ, Friedrich T, Fadeev VV, Paschenko VZ, Rubin AB (2015) The signaling state of orange carotenoid protein. Biophys J 109:595–607

    CAS  Article  Google Scholar 

  33. Masukawa H, Mochimaru M, Sakurai H (2002) Disruption of the uptake hydrogenase gene, but not of the bidirectional hydrogenase gene, leads to enhanced photobiological hydrogen production by the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120. Appl Microbiol Biotechnol 58:618–624

    CAS  Article  Google Scholar 

  34. Mulo P, Sakurai I, Aro E-M (2012) Strategies for psbA gene expression in cyanobacteria, green algae and higher plants: from transcription to PSII repair. Biochim Biophys Acta Bioenerg 1817:247–257

    CAS  Article  Google Scholar 

  35. Newton WE (2007) Physiology, biochemistry and molecular biology of nitrogen fixation. In: Bothe H, Ferguson SJ, Newton WE (eds) Biology of the nitrogen cycle. Elsevier, Amsterdam, pp 109–129

    Google Scholar 

  36. Nishiyama Y, Allakhverdiev SI, Yamamoto H, Hayashi H, Murata N (2004) Singlet oxygen inhibits the repair of photosystem II by suppressing the translation elongation of the D1 protein in Synechocystis sp. PCC 6803. Biochemistry 43:11321–11330

    CAS  Article  Google Scholar 

  37. Nürnberg DJ, Mariscal V, Bornikoel J, Nieves-Morión M, Krauß N, Herrero A, Maldener I, Flores E, Mullineaux CW (2015) Intercellular diffusion of a fluorescent sucrose analog via the septal junctions in a filamentous cyanobacterium. mBio 6:e02109–e02114

    Article  Google Scholar 

  38. Pollari M, Rantamäki S, Huokko T, Kårlund-Marttila A, Virjamo V, Tyystjärvi E, Tyystjärvi T (2011) Effects of deficiency and overdose of group 2 sigma factors in triple inactivation strains of Synechocystis sp. strain PCC 6803. J Bacteriol 193:265–273

    CAS  Article  Google Scholar 

  39. Rastogi A, Yadav DK, Szymanska R, Kruk J, Sedlarova M, Pospisil P (2014) Singlet oxygen scavenging activity of tocopherol and plastochromanol in Arabidopsis thaliana: relevance to photooxidative stress. Plant Cell Environ 37:392–401

    CAS  Article  Google Scholar 

  40. Stamatakis K, Tsimilli-Michael M, Papageorgiou GC (2014) On the question of the light-harvesting role of β-carotene in photosystem II and photosystem I core complexes. Plant Physiol Biochem 81:121–127

    CAS  Article  Google Scholar 

  41. Steiger S, Schäfer L, Sandmann G (1999) High-light-dependent upregulation of carotenoids and their antioxidative properties in the cyanobacterium Synechocystis PCC 6803. J Photochem Photobiol B 52:14–18

    CAS  Article  Google Scholar 

  42. Tamagnini P, Axelsson R, Lindberg P, Oxelfelt F, Wünschiers R, Lindblad P (2002) Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol Mol Biol Rev 66:1–20

    CAS  Article  Google Scholar 

  43. Tamagnini P, Leitão E, Oliveira P, Ferreira D, Pinto F, Harris DJ, Heidorn T, Lindblad P (2007) Cyanobacterial hydrogenases: diversity, regulation and applications. FEMS Microbiol Rev 31:692–720

    CAS  Article  Google Scholar 

  44. Umena Y, Kawakami K, Shen J-R, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55–60

    CAS  Article  Google Scholar 

  45. Vass I (2012) Molecular mechanisms of photodamage in the Photosystem II complex. Biochim Biophys Acta Bioenerg 1817:209–217

    CAS  Article  Google Scholar 

  46. Walsby AE (2007) Cyanobacterial heterocysts: terminal pores proposed as sites of gas exchange. Trends Microbiol 15:340–349

    CAS  Article  Google Scholar 

  47. Zakar T, Laczko-Dobos H, Toth TN, Gombos Z (2016) Carotenoids assist in cyanobacterial photosystem II assembly and function. Front Plant Sci 7:295

    Article  Google Scholar 

  48. Zhu Y, Graham JE, Ludwig M, Xiong W, Alvey RM, Shen G, Bryant DA (2010) Roles of xanthophyll carotenoids in protection against photoinhibition and oxidative stress in the cyanobacterium Synechococcus sp. strain PCC 7002. Arch Biochem Biophys 504:86–99

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Maj and Tor Nessling Foundation, Kone Foundation, and the Academy of Finland (FCoE program #307335). We are grateful to Professor H. Sakurai for sharing the ΔhupL mutant of Anabaena sp. PCC 7120.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sergey Kosourov.

Electronic supplementary material

ESM 1

(DOCX 127 kb)

ESM 2

(DOCX 54.9 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Murukesan, G., Lynch, F., Allahverdiyeva, Y. et al. Acclimation responses of immobilized N2-fixing heterocystous cyanobacteria to long-term H2 photoproduction conditions: carbon allocation, oxidative stress and carotenoid production. J Appl Phycol 31, 131–143 (2019). https://doi.org/10.1007/s10811-018-1535-x

Download citation

Keywords

  • H2 photoproduction
  • Thin-layer immobilization
  • Carotenoids
  • Glycogen
  • Oxidative stress
  • EPS