Skip to main content
Log in

Novel bioprocess for the cultivation of microalgae in hydroponic growing system of tomato plants

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Hydroponic growing systems and the application of natural biostimulant substances are becoming very attractive option for crop cultivation due to their economic relevance since they allow reduction in the use of fertilizer and increase the yield. In order to perform a hydroponic co-cultivation system of microalgae (Chlorella vulgaris or Scenedesmus quadricauda) and tomato plants, grown in Hoagland nutrient solution, their mutual effect and the influence of a natural biostimulant obtained by alkaline extraction from a digestate of agro-livestock residues (DHL) were evaluated. The results showed that the co-cultivation system positively affected the growth of both tomato plants and microalgae. The best option, aimed to a mutual benefit for both cultures, resulted to be the co-cultivation system of tomato plants and S. quadricauda in the presence of DHL, positively affecting the growth of tomato plants along with a great increase in microalgal biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alam MZ, Braun G, Norrie J, Hodges DM (2014) Ascophyllum extract application can promote plant growth and root yield in carrot associated with increased root-zone soil microbial activity. Can J Plant Sci 94:337–348

    Article  Google Scholar 

  • Bacellar Mendes LB, Vermelho AB (2013) Allelopathy as a potential strategy to improve microalgae cultivation. Biotechnol Biofuels 6:152–165

    Article  Google Scholar 

  • Baglieri A, Cadili V, Monterumici CM, Gennari M, Tabasso S, Montoneri E, Nardi S, Negre M (2014) Fertilization of bean plants with tomato plants hydrolysates. Effect on biomass production, chlorophyll content and N assimilation. Sci Hortic 176:194–199

    Article  CAS  Google Scholar 

  • Baglieri A, Sidella S, Barone V, Fragalà F, Silkina A, Nègre M, Gennari M (2016) Cultivating Chlorella vulgaris and Scenedesmus quadricauda microalgae to degrade inorganic compounds and pesticides in water. Environ Sci Pollut Res 23:18165–18174

    Article  CAS  Google Scholar 

  • Barone V, Baglieri A, Stevanato P, Broccanello C, Bertoldo G, Bertaggia M, Cagnin M, Pizzeghello D, Moliterni VMC, Mandolino G, Fornasier F, Squartini A, Nardi S, Concheri G (2018) Root morphological and molecular responses induced by microalgae extracts in sugar beet (Beta vulgaris L.). J Appl Phycol 30:1061–1071

    Article  CAS  Google Scholar 

  • Bulgari R, Cocetta G, Trivellini A, Vernieri P, Ferrante A (2015) Biostimulants and crop responses: a review. Biol Agric Hortic 31:1–17

    Article  Google Scholar 

  • Erice G, Louahlia S, Irigoyen JJ, Sanchez-Diaz M, Avice JC (2010) Biomass partitioning, morphology and water status of four alfalfa genotypes submitted to progressive drought and subsequent recovery. J Plant Physiol 167:114–120

    Article  CAS  Google Scholar 

  • Ertani A, Pizzeghello D, Baglieri A, Cadili V, Tambone F (2013) Humic-like substances from agro-industrial residues affect growth and nitrogen assimilation in maize (Zea mays L.) plantlets. J Geochem Explor 129:103–111

    Article  CAS  Google Scholar 

  • Gong Y, Jiang M (2011) Biodiesel production with microalgae as feedstock: from strains to biodiesel. Biotechnol Lett 33:1269–1284

    Article  CAS  Google Scholar 

  • Hickman GW (2011) Greenhouse vegetable production statistics: a review of current data on the international production of vegetables in greenhouses. Cuesta Roble Greenhouse Consultants, Mariposa

    Google Scholar 

  • Hultberg M, Carlsson AS, Gustafsson S (2013) Treatment of drainage solution from hydroponic greenhouse production with microalgae. Bioresour Technol 136:401–406

    Article  CAS  Google Scholar 

  • Kumar RR, Cho JY (2014) Reuse of hydroponic waste solution. Environ Sci Pollut Res 21:9569–9577

    Article  CAS  Google Scholar 

  • Lee YK (2001) Microalgal mass culture systems and methods: their limitation and potential. J Appl Phycol 13:307–315

    Article  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14:217–232

    Article  CAS  Google Scholar 

  • Maurya R, Paliwal C, Chokshi K, Pancha I, Ghosh T, Satpati GG, Pal R, Ghosh A, Mishra S (2016) Hydrolysate of lipid extracted microalgal biomass residue: an algal growth promoter and enhancer. Bioresour Technol 207:197–204

    Article  CAS  Google Scholar 

  • Parrado J, Bautista J, Romero EJ, García-Martínez AM, Friaza V, Tejada M (2008) Production of a carob enzymatic extract: potential use as a biofertilizer. Bioresour Technol 99:2312–2318

    Article  CAS  Google Scholar 

  • Povero G, Mejia JF, Di Tommaso D, Piaggesi A, Warrior P (2016) A systematic approach to discover and characterize natural plant biostimulants. Front Plant Sci 7:435

    Article  Google Scholar 

  • Puglisi I, Barone V, Sidella S, Coppa M, Broccanello C, Gennari M, Baglieri A (2018) Biostimulant activity of humic-like substances from agro-industrial waste on Chlorella vulgaris and Scenedesmus quadricauda. Eur J Phycol; https://doi.org/10.1080/09670262.2018.1458997

  • Rice EL (1984) Allelopathy, 2nd edn. Academic Press, Orlando

    Google Scholar 

  • Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev 35:171–205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taiz L, Zeiger E, Møller IM, Murphy A (2015) Plant physiology and development, 6th edn. Sinauer Associates, NY

    Google Scholar 

  • Vernieri P, Borghesi E, Tognoni F, Serra G, Ferrante A, Piaggesi A (2006) Use of biostimulants for reducing nutrient solution concentration in floating system. Acta Hortic 718:477–484

    Article  CAS  Google Scholar 

  • Zhang J, Wang X, Zhou Q (2017) Co-cultivation of Chlorella spp and tomato in a hydroponic system. Biomass Bioenergy 97:132–138

    Article  Google Scholar 

Download references

Funding

This work was supported by the grant “PIANO PER LA RICERCA 2016-2018”—University of Catania (Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Puglisi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barone, V., Puglisi, I., Fragalà, F. et al. Novel bioprocess for the cultivation of microalgae in hydroponic growing system of tomato plants. J Appl Phycol 31, 465–470 (2019). https://doi.org/10.1007/s10811-018-1518-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-018-1518-y

Keywords

Navigation