Advertisement

Journal of Applied Phycology

, Volume 31, Issue 1, pp 21–28 | Cite as

Optimising biomass and peridinin accumulation in the dinoflagellate Symbiodinium voratum using a twin-layer porous substrate bioreactor

  • Dorothee LangenbachEmail author
  • Michael Melkonian
Article

Abstract

Dinoflagellates are a natural source for unique secondary metabolites and pigments, which have considerable potential for applications in biomedical drug development and cosmetics. However, the technical cultivation of dinoflagellates in commonly used suspension-based closed photobioreactors (PBRs) has been shown to be difficult due to the sensitivity of the cultures to turbulence and shear forces. To overcome these and other constraints of suspension cultivation, immobilised cultivation of the dinoflagellate Symbiodinium voratum has been performed using a twin-layer porous substrate bioreactor (TL-PSBR). By optimising biomass growth using printing paper as substrate, a maximal biomass growth rate of 7.8 g dry weight m−2 growth area day−1 was measured over a period of 40 days at the relatively high-light intensity of 600 μmol photons m−2 s−1 and 2% (v/v) CO2. Linear growth of the S. voratum biofilm was observed over 40 days, and a maximal biomass standing crop of 305 g m−2 was gained. Synthesis of the potentially high-value carotenoid pigment peridinin, however, was favoured at low-light conditions (≤ 100 μmol photons m−2 s−1). By combining maximal biomass growth at high-light conditions with maximal peridinin accumulation at low-light conditions in a two-phase approach (14 days cultivation at 600 μmol photons m−2 s−1 and 2% CO2 followed by 14 days at 100 μmol photons m−2 s−1 and ambient air), a peridinin productivity of 51.4 mg peridinin m−2 day−1 was measured (about 30% higher than the values determined at either low- or high-light conditions). Using the two-phase approach, peridinin accumulated to a standing crop of ~ 1 g peridinin m−2 after 28 days of cultivation in a bench-scale TL-PSBR with a peridinin content in the dry biomass of 1% (w/w). Symbiodinium voratum may thus be a suitable source of peridinin for a diverse range of applications when grown in a twin-layer porous substrate bioreactor.

Keywords

Dinoflagellate Symbiodinium Porous substrate bioreactor Peridinin Immobilised cultivation 

References

  1. Assunção J, Guedes C, Xavier Malcata F (2017) Biotechnological and pharmacological applications of biotoxins and other bioactive molecules from dinoflagellates. Mar Drugs 15:393–436CrossRefGoogle Scholar
  2. Barros MP, Pinto E, Colepicolo P, Pedersén M (2001) Astaxanthin and peridinin inhibit oxidative damage in Fe2+-loaded liposomes: scavenging oxyradicals or changing membrane permeability? Biochem Biophys Res Comm 288:225–232CrossRefGoogle Scholar
  3. Benstein RM, Cebi Z, Podola B, Melkonian M (2014) Immobilized growth of the peridinin-producing marine dinoflagellate Symbiodinium sp. in a simple biofilm photobioreactor. Mar Biotechnol 16:621–628CrossRefGoogle Scholar
  4. Beuzenberg V, Mountfort D, Holland P, Shi F, MacKenzie L (2011) Optimization of growth and production of toxins by three dinoflagellates in photobioreactor cultures. J Appl Phycol 24:1023–1033CrossRefGoogle Scholar
  5. Boardman NK (1977) Comparative photosynthesis of sun and shade plants. Annu Rev Plant Physiol 28:355–377CrossRefGoogle Scholar
  6. Camacho FG, Gallardo Rodríguez J, Sánchez Mirón A, Cerón García M, Belarbi E, Molina Grima E (2007) Determination of shear stress thresholds in toxic dinoflagellates cultured in shaken flasks. Process Biochem 42:1506–1515CrossRefGoogle Scholar
  7. Camacho FG, Gallardo Rodríguez J, Sánchez Mirón A, Belarbi E, Chisti Y, Molina Grima E (2011) Photobioreactor scale-up for a shear-sensitive dinoflagellate microalga. Process Biochem 46:936–944CrossRefGoogle Scholar
  8. Carbone DA, Olivieri G, Pollio A, Pinto G, Melkonian M (2017) Growth and biomass productivity of Scenedesmus vacuolatus on a twin layer system and a comparison with other types of cultivations. Appl Microbiol Biotechnol 101:8321–8329CrossRefGoogle Scholar
  9. Chuyen HV, Eun JB (2017) Marine carotenoids: bioactivities and potential benefits to human health. CRC Rev Food Sci 57:2600–2610CrossRefGoogle Scholar
  10. Croce R, Van Amerongen H (2014) Natural strategies for photosynthetic light harvesting. Nat Chem Biol 10:492–501CrossRefGoogle Scholar
  11. Falkowski PG, Owens TG (1980) Light shade adapation-2 strategies in marine phytoplankton. Plant Physiol 66:592–595CrossRefGoogle Scholar
  12. Foo SC, Yusoff FM, Ismail M, Basri M, Khong NMH, Chan KW, Yau SK (2015) Production of fucoxanthin-rich fraction (FxRF) from a diatom, Chaetoceros calcitrans (Paulsen) Takano 1968. Asian Pac J Trop Med 5:834–840CrossRefGoogle Scholar
  13. Fuentes-Grünewald C, Garces E, Alacid E, Rossi S, Camp J (2013) Biomass and lipid production of dinoflagellates and raphidophytes in indoor and outdoor photobioreactors. Mar Biotechnol 15:37–47CrossRefGoogle Scholar
  14. Gagez A, Thiery V, Pasquet V, Cadoret JP, Picot L (2012) Epoxycarotenoids and cancer. Review. Curr Bioact Compd 8:109–141CrossRefGoogle Scholar
  15. Gallardo Rodríguez JJ, Cerón García M, Garcia Camacho F, Sanchez Miron A, Belarbi EH, Molina Grima E (2007) New culture approaches for yessotoxin production from the dinoflagellate Protoceratium reticulatum. Biotechnol Prog 23:339–350CrossRefGoogle Scholar
  16. Gallardo Rodríguez JJ, Sánchez Mirón A, García Camacho F, Cerón García M, Belarbi E, Molina Grima E (2010) Culture of dinoflagellates in a fed-batch and continuous stirred-tank photobioreactors: growth, oxidative stress and toxin production. Process Biochem 45:660–666CrossRefGoogle Scholar
  17. Gallardo Rodríguez J, López Rosales L, Sánchez Mirón A, Molina Grima E, Chalmers JJ (2016) New insights into shear-sensitivity in dinoflagellate microalgae. Bioresour Technol 200:699–705CrossRefGoogle Scholar
  18. Gibson CH, Thomas WH (1995) Effects of turbulence intermittency on growth inhibition of a red tide dinoflagellate, Gonyaulax polyedra Stein. J Geophys Res 100:2156–2202Google Scholar
  19. Gómez-Loredo A, Benavides J, Rito-Palomares M (2015) Growth kinetics and fucoxanthin production of Phaeodactylum tricornutum and Isochrysis galbana cultures at different light and agitation conditions. J Appl Phycol 28:849–860CrossRefGoogle Scholar
  20. Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239CrossRefGoogle Scholar
  21. Haguet Q, Bonnet A, Bérard JB, Goldberg J, Joguet N, Audrey F, Thiéry V, Picot L (2017) Antimelanoma activity of Heterocapsa triquetra pigments. Algal Res 25:207–215CrossRefGoogle Scholar
  22. Haidak DJ, Mathews CK, Sweeney BM (1966) Pigment protein complex from Gonyaulax. Science 152:212–213CrossRefGoogle Scholar
  23. Haxo FT, Kycia JH, Somers GF, Benneit A, Harold W (1976) Peridinin chlorophyll a proteins of the dinoflagellate Amphidinium carterae (Plymouth 450). Plant Physiol 57:297–303CrossRefGoogle Scholar
  24. Hofmann E, Wrench PM, Sharples FP, Hiller RG, Welte W, Diederichs K (1996) Structural basis of light harvesting by carotenoids: peridinin-chlorophyll-protein from Amphidinium carterae. Science 272:1788–1791CrossRefGoogle Scholar
  25. Hu H, Chen W, Shi Y, Cong W (2006) Nitrate and phosphate supplementation to increase toxin production by the marine dinoflagellate Alexandrium tamarense. Mar Poll Bull 52:756–760CrossRefGoogle Scholar
  26. Ishikawa C, Jomori T, Tanaka J, Senba M, Mori N (2016) Peridinin, a carotenoid, inhibits proliferation and survival of HTLV-1-infected T-cell lines. Int J Oncol 49:1713–1721CrossRefGoogle Scholar
  27. Jeffery SW, Haxo FT (1968) Photosynthetic pigments of symbiotic dinoflagellates (zooxanthellae) from corals and clams. Biol Bull 135:149–165CrossRefGoogle Scholar
  28. Jeffrey SW (1968) Quantitative thin layer chromatography of chlorophylls and carotenoids from marine algae. Biochim Biophys Acta 162:271–285CrossRefGoogle Scholar
  29. Johansen JE, Svec WA, Liaaen-Jensen S, Haxo FT (1974) Carotenoids of the Dinophyceae. Phytochemistry 13:2261–2271CrossRefGoogle Scholar
  30. Jovine RVM, Triplett E, Nelson NB, Prézelin BB (1992) Quantification of chromophore pigments, apoprotein abundance and isoelectric variants of peridinin-chlorophyll a-protein complexes (PCPs) in the dinoflagellate Heterocapsa pygmaea grown under variable light conditions. Plant Cell Physiol 33:733–741Google Scholar
  31. Karp-Boss L, Boss E, Jumars PA (2000) Motion of dinoflagellates in a simple shear flow. Limnol Oceanogr 45:1594–1602CrossRefGoogle Scholar
  32. Khalesi MK, Lamers P (2010) Partial quantification of pigments extracted from the zooxanthellate octocoral Sinularia flexibilis at varying irradiances. Biologia 65:681–687CrossRefGoogle Scholar
  33. Kim SM, Jung YJ, Kwon ON, Cha KH, Um BH, Chung D, Pan CH (2012) A potential commercial source of fucoxanthin extracted from the microalga Phaeodactylum tricornutum. Appl Biochem Biotechnol 166:1843–1855CrossRefGoogle Scholar
  34. Kiperstok AC, Sebestyén P, Podola B, Melkonian M (2017) Biofilm cultivation of Haematococcus pluvialis enables a highly productive one-phase process for astaxanthin production using high light intensities. Algal Res 21:213–222CrossRefGoogle Scholar
  35. Li T, Strous M, Melkonian M (2017) Biofilm-based photobioreactors: their design and improving productivity through efficient supply of dissolved inorganic carbon. FEMS Microbiol Lett 364:fnx218Google Scholar
  36. López Rosales L, García Camacho F, Sánchez Mirón A, Contreras Gómez A, Molina Grima E (2015) An optimisation approach for culturing shear-sensitive dinoflagellate microalgae in bench-scale bubble column photobioreactors. Bioresour Technol 197:375–382CrossRefGoogle Scholar
  37. López Rosales L, García Camacho F, Sánchez Mirón A, Contreras Gómez A, Molina Grima E (2017) Modelling shear-sensitive dinoflagellate microalgae growth in bubble column photobioreactors. Bioresour Technol 245:250–257CrossRefGoogle Scholar
  38. McFadden GI, Melkonian M (1986) Use of Hepes buffer for microalgal culture media and fixation for electron microscopy. Phycologia 25:551–557CrossRefGoogle Scholar
  39. McLachlan J (1973) Growth media - marine. In: Stein JR (ed) Handbook of phycological methods: culture methods and growth measures. Cambridge University Press, London, pp 25–52Google Scholar
  40. Michelson AD, Barnard MR, Krueger LA, Frelinger AL, Furman MI (2000) Evaluation of platelet function by flow cytometry. Methods 21:259–270CrossRefGoogle Scholar
  41. Onodera KI, Konishi Y, Taguchi T, Kiyoto S, Tominaga A (2014) Peridinin from the marine symbiotic dinoflagellate, Symbiodinium sp., regulates eosinophilia in mice. Mar Drugs 12:1773–1787CrossRefGoogle Scholar
  42. Recktenwald D (1987) Peridinin-chlorophyll complexes as fluorescent label. USA Patent 1987/ 4876190Google Scholar
  43. Richardson K, Beardall J, Raven JA (1983) Adaption of unicellular algae to irradiance: an analysis of strategies. New Phytol 93:157–191CrossRefGoogle Scholar
  44. Rogers JE, Marcovich D (2007) A simple method for the extraction and quantification of photopigments from Symbiodinium spp. J Exp Mar Biol Ecol 353:191–197CrossRefGoogle Scholar
  45. Schultze LKP, Simon MV, Li T, Langenbach D, Podola B, Melkonian M (2015) High light and carbon dioxide optimize surface productivity in a twin-layer biofilm photobioreactor. Algal Res 8:37–44CrossRefGoogle Scholar
  46. Shi J, Podola B, Melkonian M (2007) Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: an experimental study. J Appl Phycol 19:417–423CrossRefGoogle Scholar
  47. Strain H (1976) Algal carotenoids. Structural studies on peridinin. Acta Chem Scand B 30:109–120CrossRefGoogle Scholar
  48. Sugawara T, Yamashita, Sakai S, Asai A, Nagao A, Shiraishi T, Imai I, Hirata T (2007) Induction of apoptosis in DLD-1 human colon cancer cells by peridinin isolated from the dinoflagellate, Heterocapsa triquetra. Biosci Biotechnol Biochem 71:1069–1072CrossRefGoogle Scholar
  49. Sullivan JM, Swift E, Donaghay PL, Rines JEB (2003) Small-scale turbulence affects the division rate and morphology of two red-tide dinoflagellates. Harmful Algae 2:183–199CrossRefGoogle Scholar
  50. Wang B, Zarka A, Trebst A, Boussiba S (2003) Astaxanthin accumulation in Haematococcus pluvialis (Chlorophyceae) as an active photoprotective process under high irradiance. J Phycol 39:1116–1124CrossRefGoogle Scholar
  51. Wang S, Chen J, Li Z, Wang Y, Fu B, Han X, Zheng L (2015) Cultivation of the benthic microalga Prorocentrum lima for the production of diarrhetic shellfish poisoning toxins in a vertical flat photobioreactor. Bioresour Technol 179:243–248CrossRefGoogle Scholar
  52. Xia S, Wang K, Wan L, Li A, Hu Q, Zhang C (2013) Production, characterization, and antioxidant activity of fucoxanthin from the marine diatom Odontella aurita. Mar Drugs 11:2667–2681CrossRefGoogle Scholar
  53. Yoshida T, Maoka T, Das SK, Kanazawa K, Horinaka M, Wakada M, Satomi Y, Nishino H, Sakai T (2007) Halocynthiaxanthin and peridinin sensitize colon cancer cell lines to tumor necrosis factor-related apoptosis-inducing ligand. Mol Cancer Res 5:615–625CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Universität zu KölnCologneGermany

Personalised recommendations