Skip to main content

Advertisement

Log in

Elucidating the role of nutrients in C-phycocyanin production by the halophilic cyanobacterium Euhalothece sp.

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

In this study, a novel halophilic cyanobacterium was isolated and identified as Euhalothece sp. KZN. This fast-growing strain had the ability to synthesise high yields (12 mg g−1) of C-phycocyanin (C-PC), a highly fluorescent blue light-harvesting pigment with numerous potential uses in the biotechnology and commercial sectors. This study elucidated the individual and interactive role of different nutrients in BG11 growth medium for enhancing C-PC production in Euhalothece sp. KZN. Nine components of BG11 medium were screened for their effects via fractional factorial design (FFD). The results revealed a significant influence of nutrients, viz. MgSO4, NaNO3 and minor nutrients (citric acid, EDTA-iron citrate, CaCl2 and Na2CO3) on C-PC yield. These three components were further explored for their optimum concentration for enhancing C-PC production using a central composite design. The optimum values for these essential nutrients were found to be as follows: 0.10 g L−1 of MgSO4, 1.67 g L−1 of NaNO3 and 10 mL L−1 of minor nutrients which resulted in a 280% increase in C-PC yield with predicted and actual values of 43.97 and 45 mg g−1, respectively. Euhalothece sp. KZN is a strong potential candidate for C-PC production and can be further exploited to produce this industrially valuable compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen MM, Stanier RY (1968) Growth and division of some unicellular blue-green algae. J Gen Microbiol 51:199–202

    Article  PubMed  CAS  Google Scholar 

  • Alvey RM, Biswas A, Schluchter WM, Bryant DA (2011) Effects of modified phycobilin biosynthesis in the cyanobacterium Synechococcus sp. strain PCC 7002. J Bacteriol 193:1663–1671

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aoki R, Goto T, Fujita Y (2011) A heme oxygenase isoform is essential for aerobic growth in the cyanobacterium Synechocystis sp. PCC 6803: modes of differential operation of two isoforms/enzymes to adapt to low oxygen environments in cyanobacteria. Plant Cell Physiol 52:1744–1756

    Article  PubMed  CAS  Google Scholar 

  • Bandyopadhyay A, Elvitigala T, Welsh E, Stockel J, Liberton M, Min H, Sherman LA, Pakrasi HB (2011) Novel metabolic attributes of the genus cyanothece, comprising a group of unicellular nitrogen-fixing Cyanothece. mBio 2(5). https://doi.org/10.1128/mBio.00214-11

  • Beale SI (1999) Enzymes of chlorophyll biosynthesis. Photosynth Res 60:43–73

    Article  CAS  Google Scholar 

  • Bennett A, Bogorad L (1973) Complementary chromatic adaptation in a filamentous blue-green alga. J Cell Biol 58:419–435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bryant DA, Guglielmi G, de Marsac NT, Castets A-M, Cohen-Bazire G (1979) The structure of cyanobacterial phycobilisomes: a model. Arch Microbiol 123:113–127

    Article  CAS  Google Scholar 

  • Burrows E, Chaplen F, Ely R (2008) Optimization of media nutrient composition for increased photofermentative hydrogen production by Synechocystis sp. PCC 6803. Int J Hydrog Energy 33:6092–6099

    Article  CAS  Google Scholar 

  • Chakdar H, Pabbi S (2016) Cyanobacterial phycobilins: production, purification, and regulation. In: Shukla P (ed) Frontier discoveries and innovations in interdisciplinary microbiology. Springer India, New Delhi, pp 45–69

    Chapter  Google Scholar 

  • Chaneva G, Furnadzhieva S, Minkova K, Lukavsky J (2007) Effect of light and temperature on the cyanobacterium Arthronema africanum—a prospective phycobiliprotein-producing strain. J Appl Phycol 19:537–544

    Article  CAS  Google Scholar 

  • Chang L, Liu X, Li Y, Liu CC, Yang F, Zhao J, Sui SF (2015) Structural organization of an intact phycobilisome and its association with photosystem II. Cell Res 25:726–737

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chow F (2012) Nitrate assimilation: the role of in vitro nitrate reductase assay as nutritional predictor. In: Najafpour M (ed) Applied photosynthesis, vol 6. InTech, Rijeka, pp 726–737

    Google Scholar 

  • Cosner JC (1978) Phycobilisomes in spheroplasts of Anacystis nidulans. J Bacteriol 135:1137–1140

    PubMed  PubMed Central  CAS  Google Scholar 

  • Czarnecki O, Grimm B (2012) Post-translational control of tetrapyrrole biosynthesis in plants, algae, and cyanobacteria. J Exp Bot 63:1675–1687

    Article  PubMed  CAS  Google Scholar 

  • Deshmukh DV, Puranik PR (2010) Application of Plackett-Burman design to evaluate media components affecting antibacterial activity of alkaliphilic cyanobacteria isolated from Lonar Lake. Turk J Biochem 35:114–120

    CAS  Google Scholar 

  • Deshmukh DV, Puranik PR (2012) Statistical evaluation of nutritional components impacting phycocyanin production in Synechocystis sp. Braz J Microbiol 43:348–355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eisenhut M, Aguirre von Wobeser E, Jonas L, Schubert H, Ibelings BW, Bauwe H, Matthijs HC, Hagemann M (2007) Long-term response toward inorganic carbon limitation in wild type and glycolate turnover mutants of the cyanobacterium Synechocystis sp. strain PCC 6803. Plant Physiol 144:1946–1959

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eriksen NT (2008) Production of phycocyanin—a pigment with applications in biology, biotechnology, foods and medicine. Appl Microbiol Biotechnol 80:1–14

    Article  PubMed  CAS  Google Scholar 

  • Esen M, Ozturk Urek R (2015) Ammonium nitrate and iron nutrition effects on some nitrogen assimilation enzymes and metabolites in Spirulina platensis. Biotechnol Appl Biochem:62275–62286

  • Flores E, Herrero A (1994) Assimilatory nitrogen metabolism and its regulation. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer Academic, Dordrecht, pp 487–517

    Chapter  Google Scholar 

  • Frankenberg N, Lagarias JC (2003) Phycocyanobilin:ferredoxin oxidoreductase of Anabaena sp. PCC 7120. Biochemical and spectroscopic. J Biol Chem 278:9219–9226

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Pichel F, Nubel U, Muyzer G (1998) The phylogeny of unicellular, extremely halotolerant cyanobacteria. Arch Microbiol 169:469–482

    Article  PubMed  CAS  Google Scholar 

  • Glazer AN (1994) Phycobiliproteins—a family of valuable, widely used fluorophores. J Appl Phycol 6:105–112

    Article  CAS  Google Scholar 

  • Gray BH, Lipschultz CA, Gantt E (1973) Phycobilisomes from a blue-green alga Nostoc species. J Bacteriol 116:471–478

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hazra P, Saha Kesh G (2017) Isolation and purification of phycocyanin from cyanobacteria of a mangrove forest. Appl Biol Chem 60:631–636

    Article  Google Scholar 

  • Herrero A, Vega-Palas MA, Martín-Nieto J, Muro-Pastor AM, Madueño F, Flores E (1990) Molecular biology of the assimilation of nitrogenous compounds by cyanobacteria. In: Ullrich R, Rigano C, Figgi A, Aparicio PJ (eds) Inorganic nitrogen in plants and microorganisms. Springer, Berlin, pp 308–311

    Chapter  Google Scholar 

  • Hong S-J, Lee C-G (2008) Statistical optimization of culture media for production of phycobiliprotein by Synechocystis sp. PCC 6701. Biotechnol Bioprocess Eng 13:491–498

    Article  CAS  Google Scholar 

  • Jaffee EK (2003) An unusual phylogenetic variation in the metal ion binding sites of porphobilinogen synthase. Chem Biol 10:25–34

    Article  CAS  Google Scholar 

  • Johnson EM, Kumar K, Das D (2014) Physicochemical parameters optimization, and purification of phycobiliproteins from the isolated Nostoc sp. Bioresour Technol 166:541–547

    Article  PubMed  CAS  Google Scholar 

  • Kannaujiya VK, Sundaram S, Sinha RP (2017) Phycobiliproteins: recent developments and future applications. Springer, Singapore

    Book  Google Scholar 

  • Kaushal S, Singh Y, Khattar JIS, Singh DP (2017) Phycobiliprotein production by a novel cold desert cyanobacterium Nodularia sphaerocarpa PUPCCC 420.1. J Appl Phycol 29:1819–1827

    Article  CAS  Google Scholar 

  • Kenekar AA, Deodhar MA (2013) Effect of varying physicochemical parameters on the productivity and phycobiliprotein content of indigenous isolate Geitlerinema sulphureum. Biotechnol Bioprocess Eng 12:146–154

    CAS  Google Scholar 

  • Komárek J (2016) A polyphasic approach for the taxonomy of cyanobacteria: principles and applications. Eur J Phycol 51:346–353

    Article  CAS  Google Scholar 

  • Komárek J, Kaštovsky′ J, Mareš J, Johansen JR (2014) Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) using a polyphasic approach. Preslia 86:295–335

    Google Scholar 

  • Kuddus M, Singh P, Thomas G, Al-Hazimi A (2013) Recent developments in production and biotechnological applications of C-phycocyanin. Biomed Res Int. https://doi.org/10.1155/2013/742859

  • Latifi A, Jeanjean R, Lemeille S, Havaux M, Zhang CC (2005) Iron starvation leads to oxidative stress in Anabaena sp. strain PCC 7120. J Bacteriol 187:6596–6598

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leu J-Y, Lin T-H, Selvamani MJP, Chen H-C, Liang J-Z, Pan K-M (2013) Characterization of a novel thermophilic cyanobacterial strain from Taian hot springs in Taiwan for high CO2 mitigation and C-phycocyanin extraction. Process Biochem 48:41–48

    Article  CAS  Google Scholar 

  • Li D-H, Yang S-Z, Li H, Xie J, Zhao J-Q (2004) Monolayer film of phycobilisome-thylakoid membrane complexes from Spirulina platensis. Photosynthetica 42:365–370

    Article  CAS  Google Scholar 

  • Liotenberg S, Campbell D, Rippka R, Houmard J, Marsac NT (1996) Effect of the nitrogen source on phycobiliprotein synthesis and cell reserves in a chromatically adapting filamentous cyanobacterium. Microbiology 142:611–622

    Article  PubMed  CAS  Google Scholar 

  • Loza V, Perona E, Carmona J, Mateo P (2013) Phenotypic and genotypic characteristics of Phormidium-like cyanobacteria inhabiting microbial mats are correlated with the trophic status of running waters. Eur J Phycol 48:35–252

    Article  Google Scholar 

  • Ludwig M, Bryant DA (2012) Acclimation of the global transcriptome of the cyanobacterium Synechococcus sp. strain PCC 7002 to nutrient limitations and different nitrogen sources. Front Microbiol 3:1–15

    Google Scholar 

  • Manirafasha E, Ndikubwimana T, Zeng X, Lu Y, Jing K (2016) Phycobiliprotein: potential microalgae derived pharmaceutical and biological reagent. Biochem Eng J 109:282–296

    Article  CAS  Google Scholar 

  • Margheri MC, Bosco M, Giovannetti L, Ventura S (1999) Assessment of the genetic diversity of halotolerant coccoid cyanobacteria using amplified 16S rDNA restriction analysis. FEMS Microbiol Lett 177(1): 9–16

    Article  Google Scholar 

  • McKay CP, Rask JC, Detweiler AM, Bebout BM, Everroad RC, Lee JZ, Chanton JP, Mayer MH, Caraballo AA, Kapil B, Al-Awar M, Al-Farraj A (2016) An unusual inverted saline microbial mat community in an interdune sabkha in the rub’ al khali (the empty quarter), United Arab Emirates. PloS one 11(3):e0150342. https://doi.org/10.1371/journal.pone.0150342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mikhodiuk OS, Gerasimenko LM, Akimov VN, Ivanovskii RN, Zavarzin GA (2008) Ecophysiology and polymorphism of the unicellular extremely natronophilic cyanobacterium Euhalothece sp. Z-M001 from Lake Magadi. Mikrobiologiia 77:805–813

    PubMed  CAS  Google Scholar 

  • Montellano PR (2000) The mechanism of heme oxygenase. Curr Opin Chem Biol 4:221–227

    Article  PubMed  CAS  Google Scholar 

  • Montogomery DC (2012) Design and analysis of experiments, 8th edn. Willey, New York

    Google Scholar 

  • Moraes IO, Arruda ROM, Maresca NR, Antunes AO, Moraes RO (2013) Spirulina platensis: process optimization to obtain biomass. J Food Sci Technol 33:179–183

    Article  Google Scholar 

  • Myers RH, Montgomery DC, Anderson-Cook C (2009) Response surface methodology: process and product optimization using designed experiment, 8th edn. Wiley, Hoboken

    Google Scholar 

  • Nübel U, Garcia-Pichel F, Muyzer G (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microbiol 63:3327–3332

    PubMed  PubMed Central  Google Scholar 

  • Pandey U, Pandey J (2008) Enhanced production of biomass, pigments and antioxidant capacity of a nutritionally important cyanobacterium Nostochopsis lobatus. Bioresour Technol 99:4520–4523

    Article  PubMed  CAS  Google Scholar 

  • Patel A, Mishra S, Pawar R, Ghosh PK (2005) Purification and characterization of C-phycocyanin from cyanobacterial species of marine and freshwater habitat. Protein Expr Purif 40:248–255

    Article  PubMed  CAS  Google Scholar 

  • Porta D, Rippka R, Hernández-Mariné M (2000) Unusual ultrastructural features in three strains of Cyanothece (cyanobacteria). Arch Microbiol 173:154–163

    Article  PubMed  CAS  Google Scholar 

  • Prasanna R, Pabby A, Saxena S, Singh PK (2004) Modulation of pigment profiles of Calothrix elenkenii in response to environmental changes. J Plant Physiol 161:1125–1132

    Article  PubMed  CAS  Google Scholar 

  • Ramos V, Morais J, Vasconcelos VM (2017) A curated database of cyanobacterial strains relevant for modern taxonomy and phylogenetic studies. Sci Data 4:170054

    Article  PubMed  PubMed Central  Google Scholar 

  • Richaud C, Zabulon G, Joder A, Thomas J-C (2001) Nitrogen or sulfur starvation differentially affects phycobilisome degradation and expression of the nblA gene in Synechocystis strain PCC 6803. J Bacteriol 183:2989–2994

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Rodríguez-Sánchez R, Ortiz-Butrón R, Blas-Valdivia V, Hernández-García A, Cano-Europa E (2012) Phycobiliproteins or C-phycocyanin of Arthrospira (Spirulina) maxima protect against HgCl2-caused oxidative stress and renal damage. Food Chem 135:2359–2365

    Article  PubMed  CAS  Google Scholar 

  • Schwarz R, Forchhammer K (2005) Acclimation of unicellular cyanobacteria to macronutrient deficiency: emergence of a complex network of cellular responses. Microbiology 151:2503–2514

    Article  PubMed  CAS  Google Scholar 

  • Sekar S, Chandramohan M (2008) Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. J Appl Phycol 20:113–136

    Article  Google Scholar 

  • Shoolingin-Jordan PM, Spencer P, Sarwar M, Erskine PE, Cheung KM, Cooper JB, Norton EB (2002) 5-Aminolaevulinic acid dehydratase: metals, mutants and mechanism. Biochem Soc Trans 30:584–590

    Article  PubMed  CAS  Google Scholar 

  • Singh AK, McIntyre LM, Sherman LA (2003) Microarray analysis of the genome-wide response to iron deficiency and iron reconstitution in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol 132:1825–1839

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh NK, Parmar A, Madamwar D (2009) Optimization of medium components for increased production of C-phycocyanin from Phormidium ceylanicum and its purification by single step process. Bioresour Technol 100:1663–1669

    Article  PubMed  CAS  Google Scholar 

  • Singh NK, Parmar A, Sonani RR, Madamwar D (2012) Isolation, identification and characterization of novel thermotolerant Oscillatoria sp. N9DM: change in pigmentation profile in response to temperature. Process Biochem 47:2472–2479

    Article  CAS  Google Scholar 

  • Spiller SC, Castelfranco AM, Castelfranco PA (1982) Effects of iron and oxygen on chlorophyll biosynthesis: I. In vivo observations on iron and oxygen-deficient plants. Plant Physiol 69:107–111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev 35:171–205

    PubMed  PubMed Central  CAS  Google Scholar 

  • Stöckel J, Elvitigala TR, Liberton M, Pakrasi HB (2013) Carbon availability affects diurnally controlled processes and cell morphology of Cyanothece 51142. PLoS One 8(2):e56887

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun L, Wang S, Gong X, Zhao M, Fu X, Wang L (2009a) Isolation, purification and characteristics of R-phycoerythrin from a marine macroalga Heterosiphonia japonica. Protein Expr Purif 64:146–154

    Article  PubMed  CAS  Google Scholar 

  • Sun L, Wang S, Zhao M, Fu X (2009b) Phycobilisomes from cyanobacteria. Handbook on cyanobacteria: biochemistry, biotechnology and applications. Nova Science Publishers, Inc, New York

    Google Scholar 

  • Tandeau de Marsac N, Houmard J (1993) Adaptation of cyanobacteria to environmental stimuli: new steps towards molecular mechanisms. FEMS Microbiol Lett 104:119–189

    Article  CAS  Google Scholar 

  • Tooley AJ, Cai YA, Glazer AN (2001) Biosynthesis of a fluorescent cyanobacterial C-phycocyanin holo-alpha subunit in a heterologous host. Proc Natl Acad Sci U S A 98:10560–10565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tu SL, Gunn A, Toney MD, Britt RD, Lagarias JC (2004) Biliverdin reduction by cyanobacterial phycocyanobilin:ferredoxin oxidoreductase (PcyA) proceeds via linear tetrapyrrole radical intermediates. J Am Chem Soc 126:8682–8693

    Article  PubMed  CAS  Google Scholar 

  • Venkata Ramana Reddy MB, Lakshmana Rao SS, Rao CS (2015) Optimization of process parameters and media components to increase the biomass of cyanobacteria (blue-green algae) Anabaena ambigua using response surface methodology. Asian J Microbiol Biotechnol Environ Sci 17:215–225

    Google Scholar 

  • Wakte PS, Mohite YS, Bhusare DU (2011) Influence of metal ions on growth and C-phycocyanin production in Arthrospira (Spirulina) platensis. Recent Res Sci Technol 3(5):104–108

    CAS  Google Scholar 

  • Walsby AE, Rijn JV, Cohen Y (1983) The biology of a new gas-vacuolate cyanobacterium, Dactylococcopsis salina sp.nov., in Solar Lake. Proc R Soc Lond B 217:417–447

    Article  Google Scholar 

  • Wang C, Kong HN, Wang XZ, Wu HD, Lin Y, He SB (2010) Effects of iron on growth and intracellular chemical contents of Microcystis aeruginosa. Biomed Environ Sci 23:48–52

    Article  PubMed  Google Scholar 

  • Waterbury JB, Rippka R (1989) Subsection I. Order Chlorococcales Wettstein 1924, emend. Rippka et al. 1979. In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 3. Williams and Wilkins, Baltimore, pp 1728–1746

    Google Scholar 

  • Waterbury JB, Stanier RY (1981) Isolation and growth of cyanobacteria from marine and hypersaline environments. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes: a handbook on habitats, isolation, and identification of bacteria. Springer, Berlin, pp 221–223

    Chapter  Google Scholar 

  • Wiethaus J, Busch AWU, Dammeyer T, Frankenberg-Dinkel N (2010) Phycobiliproteins in Prochlorococcus marinus: biosynthesis of pigments and their assembly into proteins. Eur J Cell Biol 89:1005–1010

    Article  PubMed  CAS  Google Scholar 

  • Xie Y, Jin Y, Zeng X, Chen J, Lu Y, Jing K (2015) Fed-batch strategy for enhancing cell growth and C-phycocyanin production of Arthrospira (Spirulina) platensis under phototrophic cultivation. Bioresour Technol 180:281–287

    Article  PubMed  CAS  Google Scholar 

  • Yi Z-W, Huang H, Kuang T-Y, Sui S-F (2005) Three-dimensional architecture of phycobilisomes from Nostoc flagelliforme revealed by single particle electron microscopy. FEBS Lett 579:3569–3573

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Chi Z, Lu W (2007) Exopolysaccharide production by four cyanobacterial isolates and preliminary identification of these isolates. J Ocean Univ China 6:147–152

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank our colleagues at the Institute for Water and Wastewater Technology (IWWT), Durban University of Technology (DUT), for their support and guidance.

Funding

This work was supported by the grant from the National Research Foundation, for which the authors are thankful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faizal Bux.

Electronic supplementary material

ESM 1

(DOCX 15 kb)

ESM 2

(DOCX 16 kb)

ESM 3

(DOCX 1527 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mogany, T., Swalaha, F.M., Kumari, S. et al. Elucidating the role of nutrients in C-phycocyanin production by the halophilic cyanobacterium Euhalothece sp.. J Appl Phycol 30, 2259–2271 (2018). https://doi.org/10.1007/s10811-018-1477-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-018-1477-3

Keywords

Navigation