Journal of Applied Phycology

, Volume 30, Issue 4, pp 2215–2225 | Cite as

Effect of biodegradable chelating ligands on Fe uptake in and growth of marine microalgae

  • Hiroshi Hasegawa
  • Ayumi Nozawa
  • Rimana Islam Papry
  • Teruya Maki
  • Osamu Miki
  • M. Azizur Rahman


Iron (Fe) is an important nutrient for phytoplankton. The low solubility of Fe in oxic waters can be a growth-limiting factor for phytoplankton. Synthetic aminopolycarboxylates (APCs) such as ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA) are widely used as Fe complexing agents for microalgae culture. However, the presence of these non-ready biodegradable APCS in aquatic systems may have serious environmental consequences. In the present study, the effects of biodegradable chelating ligands (hydroxyiminodisuccinic acid (HIDS), methylglycinediacetic acid (MGDA), and iminodisuccinate (IDS)) on Fe uptake in and growth of three coastal microalgae (Heterosigma akashiwo, Prymnesium parvum, and Skeletonema marinoi-dohrnii complex) were investigated, and the results were compared with those of non-ready biodegradable APCs (EDTA, ethylenediamine tetra-methylene phosphonic acid (EDTMP), and DTPA). The biodegradable chelating ligands did not have significant growth inhibition effect on the phytoplankton. Although the growth of the algae (except S. marinoi-dohrnii complex) was not affected substantially by 1.5 and 7.5 μM of DTPA, growth inhibition occurred by 7.5 μM of EDTMP and 150 μM of EDTA, DTPA, and EDTMP. The effect of chelating ligands on microalgal growth was likely to be associated with the intracellular Fe uptake influenced by the chelating ligands. On average, intracellular Fe concentrations for biodegradable chelating ligands were substantially higher than those for non-ready biodegradable APCs. Except H. akashiwo, the ratio of intra/extracellular Fe concentrations was highest for MGDA followed by IDS and HIDS. The results indicate that biodegradable chelating ligands are more efficient than non-ready biodegradable APCs in intracellular Fe uptake and algal growth.


Microalgae Growth Fe uptake APCs Chelating ligands 



We would like to thank Dr. Christel Hassler, University of Geneva, Switzerland, for reviewing the manuscript and making a number of helpful suggestions prior to submission.

Funding information

This research was partly supported by a Grant-in-Aid for Scientific Research (18510071) from Japan Society for the Promotion of Science (JSPS) and the Steel Industry Foundation for the Advancement of Environmental Protection Technology, Japan.


  1. Andersen RA (2004) Biology and systematics of heterokont and haptophyte algae. Am J Bot 91:1508–1522CrossRefPubMedGoogle Scholar
  2. Anderson MA, Morel FMM (1982) The influence of aqueous iron chemistry on the uptake of iron by the coastal diatom Thalassiosira weissflogii. Limnol Oceanogr 27:789–813CrossRefGoogle Scholar
  3. Baker JW, Grover JP, Brooks BW, Ureña-Boeck F, Roelke DL, Errera R, Kiesling RL (2007) Growth and toxicity of Prymnesium parvum (Haptophyta) as a function of salinity, light, and temperature. J Phycol 43:219–227CrossRefGoogle Scholar
  4. Baker JW, Grover JP, Ramachandrannair R, Black C, Valenti TW Jr, Brooks BW, Roelke DL (2009) Growth at the edge of the niche: an experimental study of the harmful alga Prymnesium parvum. Limnol Oceanogr 54:1679–1687CrossRefGoogle Scholar
  5. Beardall J, Berman T, Heraud P, Kadiri MO, Light BR, Patterson G, Roberts S, Sulzberger B, Sahan E, Uehlinger U (2001) A comparison of methods for detection of phosphate limitation in microalgae. Aquat Sci 63:107–121CrossRefGoogle Scholar
  6. Begum ZA, Rahman IMM, Tate Y, Egawa Y, Maki T, Hasegawa H (2012) Formation and stability of binary complexes of divalent ecotoxic ions (Ni, Cu, Zn, Cd, Pb) with biodegradable aminopolycarboxylate chelants (DL-2-(2-carboxymethyl) nitrilotriacetic acid, GLDA, and 3-hydroxy-2, 2′-iminodisuccinic acid, HIDS) in aqueous solutions. J Solut Chem 41:1713–1728CrossRefGoogle Scholar
  7. Benemann JR (2008) Opportunities and challenges in algae biofuels production.
  8. Benvenuti G, Bosma R, Ji F, Lamers P, Barbosa MJ, Wijffels RH (2016) Batch and semi-continuous microalgal TAG production in lab-scale and outdoor photobioreactors. J Appl Phycol 28:3167–3177CrossRefPubMedPubMedCentralGoogle Scholar
  9. Berne RM, Levy MN (eds) (1998) Physiology. Mosby, USAGoogle Scholar
  10. Blain S, Quéguiner B, Armand L, Belviso S, Bombled B, Bopp L, Bowie A, Brunet C, Brussaard C, Carlotti F (2007) Effect of natural iron fertilization on carbon sequestration in the Southern Ocean. Nature 446:1070–1074CrossRefPubMedGoogle Scholar
  11. Boyd P, Berges JA, Harrison PJ (1998) In vitro iron enrichment experiments at iron-rich and-poor sites in the NE subarctic Pacific. J Exp Mar Biol Ecol 227:133–151CrossRefGoogle Scholar
  12. Bucheli-Witschel M, Egli T (2001) Environmental fate and microbial degradation of aminopolycarboxylic acids. FEMS Microbiol Rev 25:69–106CrossRefPubMedGoogle Scholar
  13. Carvalho WF, Granéli E (2010) Contribution of phagotrophy versus autotrophy to Prymnesium parvum growth under nitrogen and phosphorus sufficiency and deficiency. Harmful Algae 9:105–115CrossRefGoogle Scholar
  14. Chang FH, Anderson C, Boustead NC (1990) First record of a Heterosigma (Raphidophyceae) bloom with associated mortality of cage-reared salmon in Big Glory Bay, New Zealand. N Z J Mar Freshw Res 24:461–469CrossRefGoogle Scholar
  15. Chang FH, Pridmore R, Boustead N (1993) Occurrence and distribution of Heterosigma cf. akashiwo (Raphidophyceae) in a 1989 bloom in Big Glory Bay, New Zealand. In: Smayda TJ, Shimizu Y (eds) Toxic phytoplankton blooms in the sea. Elsevier, Amsterdam, pp 675–680Google Scholar
  16. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306CrossRefPubMedGoogle Scholar
  17. Coale KH, Fitzwater SE, Gordon RM, Johnson KS, Barber RT (1996a) Control of community growth and export production by upwelled iron in the equatorial Pacific Ocean. Nature 379:621–624CrossRefGoogle Scholar
  18. Coale KH, Johnson KS, Fitzwater SE, Gordon RM, Tanner S, Chavez FP, Ferioli L, Nightingale P, Cooper D, Cochlan WP (1996b) A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature 383:495–501CrossRefPubMedGoogle Scholar
  19. Edler L, Hällfors G, Ak N (1984) Preliminary check-list of the phytoplankton of the Baltic Sea. Acta Bot Fenn 128:1–26Google Scholar
  20. Edvardsen B, Imai I (2006) The ecology of harmful flagellates within Prymnesiophyceae and Raphidophyceae. In: Granéli E, Turner JT (eds) Ecology of harmful algae. Springer, Berlin, pp 67–79CrossRefGoogle Scholar
  21. Fistarol GO, Legrand C, Granéli E (2003) Allelopathic effect of Prymnesium parvum on a natural plankton community. Mar Ecol Prog Ser 255:115–125CrossRefGoogle Scholar
  22. Gerringa LJA, De Baar HJW, Timmermans KR (2000) A comparison of iron limitation of phytoplankton in natural oceanic waters and laboratory media conditioned with EDTA. Mar Chem 68:335–346CrossRefGoogle Scholar
  23. Hasegawa H, Rahman MA, Saitoh K, Ueda K (2010) Effect of biodegradable chelating ligand on iron bioavailability and radish growth. J Plant Nutr 33:933–942CrossRefGoogle Scholar
  24. Hasegawa H, Rahman MA, Saitou K, Kobayashi M, Okumura C (2011) Influence of chelating ligands on bioavailability and mobility of iron in plant growth media and their effect on radish growth. Environ Exp Bot 71:345–351Google Scholar
  25. Hasegawa H, Rahman MM, Kadohashi K, Takasugi Y, Tate Y, Maki T, Rahman MA (2012) Significance of the concentration of chelating ligands on Fe3+-solubility, bioavailability, and uptake in rice plant. Plant Physiol Biochem 58:205–211CrossRefPubMedGoogle Scholar
  26. Hassler CS, Norman L, Mancuso Nichols CA, Clementson LA, Robinson C, Schoemann V, Watson RJ, Doblin MA (2015) Iron associated with exopolymeric substances is highly bioavailable to oceanic phytoplankton. Mar Chem 173:136–147CrossRefGoogle Scholar
  27. Hassler CS, Schoemann V, Nichols CM, Butler ECV, Boyd PW (2011) Saccharides enhance iron bioavailability to Southern Ocean phytoplankton. Proc Natl Acad Sci 108:1076–1081CrossRefPubMedGoogle Scholar
  28. Hudson RJM, Morel FMM (1989) Distinguishing between extra-and intracellular iron in marine phytoplankton. Limnol Oceanogr 34:1113–1120CrossRefGoogle Scholar
  29. Hudson RJM, Morel FMM (1990) Iron transport in marine phytoplankton: kinetics of cellular and medium coordination reactions. Limnol Oceanogr 35:1002–1020CrossRefGoogle Scholar
  30. Hutchins DA, Franck VM, Brzezinski MA, Bruland KW (1999) Inducing phytoplankton iron limitation in iron-replete coastal waters with a strong chelating ligand. Limnol Oceanogr 44:1009–1018CrossRefGoogle Scholar
  31. Hutner SH, Provasoli L, Schatz A, Haskins CP (1950) Some approaches to the study of the role of metals in the metabolism of microorganisms. Proc Am Philos Soc 94:152–170Google Scholar
  32. Hyvönen H, Orama M, Saarinen H, Aksela R (2003) Studies on biodegradable chelating ligands: complexation of iminodisuccinic acid (ISA) with Cu(II), Zn(II), Mn(II) and Fe(III) ions in aqueous solution. Green Chem 5:410–414CrossRefGoogle Scholar
  33. Itakura S, Imai I, Itoh K (1992) Morphology and rejuvenation of Skeletonema costatum (Bacillariophyceae) resting cells from the bottom sediments of Hiroshima Bay, the Seto Inland Sea, Japan. Bull Plankton Soc Japan 38:135–145Google Scholar
  34. Itakura S, Imai I, Itoh K (1997) “Seed bank” of coastal planktonic diatoms in bottom sediments of Hiroshima Bay, Seto Inland Sea, Japan. Mar Biol 128:497–508CrossRefGoogle Scholar
  35. Jackson GA, Morgan JJ (1978) Trace metal-chelator interactions and phytoplankton growth in seawater media: theoretical analysis and comparison with reported observations. Limnol Oceanogr 23:268–282CrossRefGoogle Scholar
  36. Kean MA, Delgado EB, Mensink BP, Bugter MHJ (2015) Iron chelating agents and their effects on the growth of Pseudokirchneriella subcapitata, Chlorella vulgaris, Phaeodactylum tricornutum and Spirulina platensis in comparison to Fe-EDTA. J Algal Biomass Utiln 6:56–73Google Scholar
  37. Knepper TP (2003) Synthetic chelating agents and compounds exhibiting complexing properties in the aquatic environment. Trends Anal Chem 22:708–724CrossRefGoogle Scholar
  38. La Claire JW (2006) Analysis of expressed sequence tags from the harmful alga, Prymnesium parvum (Prymnesiophyceae, Haptophyta). Mar Biotechnol 8:534–546CrossRefPubMedGoogle Scholar
  39. Lin L, Cunshan Z, Vittayapadung S, Xiangqian S, Mingdong D (2011) Opportunities and challenges for biodiesel fuel. Appl Energy 88:1020–1031CrossRefGoogle Scholar
  40. Liu Z-Y, Wang G-C, Zhou B-C (2008) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour Technol 99:4717–4722CrossRefPubMedGoogle Scholar
  41. Lundholm N, Moestrup O (2006) The biogeography of harmful algae. In: Granéli E, Turner JT (eds) Ecology of harmful algae. Springer, Berlin, pp 23–35CrossRefGoogle Scholar
  42. Lyman J, Fleming RH (1940) Composition of sea water. J Mar Res 3:134–146Google Scholar
  43. Maki T, Suzuki T, Kido K, Nakahara A, Higashi T, Hasegawa H, Ueda K, Saijoh K (2008) Effect of iron stress on gene expression in harmful microalga Prymnesium Parvum. J Ecotechnol Res 14:13–16Google Scholar
  44. Marchetti A, Maldonado MT (2016) Iron. In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Dordrecht, pp 233–279CrossRefGoogle Scholar
  45. Martell AE, Smith RM (2004) NIST standard reference database 46 version 8.0. NIST critically selected stability constants of metal complexes database, 8.0 edn. US Department of Commerce, Institute of Standards and Technology, MD, USAGoogle Scholar
  46. Martin JH, Gordon RM, Fitzwater SE (1991) The case for iron. Limnol Oceanogr 36:1793–1802CrossRefGoogle Scholar
  47. Moore JK, Doney SC, Glover DM, Fung IY (2001) Iron cycling and nutrient-limitation patterns in surface waters of the World Ocean. Deep Sea Res Part II: Topic Stud Oceanogr 49:463–507CrossRefGoogle Scholar
  48. Morel FMM, Hering JG (1993) Principles and applications of aquatic chemistry: complexation. Wiley, New YorkGoogle Scholar
  49. Muggli DL, Harrison PJ (1996) EDTA suppresses the growth of oceanic phytoplankton from the Northeast Subarctic Pacific. J Exp Mar Biol Ecol 205:221–227CrossRefGoogle Scholar
  50. Myers J, Phillips JN Jr, Graham J-R (1951) On the mass culture of algae. Plant Physiol 26:539–548CrossRefPubMedPubMedCentralGoogle Scholar
  51. Naito K, Imai I, Nakahara H (2008) Complexation of iron by microbial siderophores and effects of iron chelates on the growth of marine microalgae causing red tides. Phycol Res 56:58–67CrossRefGoogle Scholar
  52. Nörtemann B (2005) Biodegradation of chelating agents: EDTA, DTPA, PDTA, NTA, and EDDS. In: VanBriesen JM (ed) B. N. Biogeochemistry of Chelating Agents, American Chemical Society, Washington DC, pp 150–170Google Scholar
  53. Okumura C, Rahman MA, Takimoto A, Hasegawa H (2013) Effect of nitrate on the determination of iron concentration in phytoplankton culture medium by liquid scintillation counting (LSC) method using 55Fe as radioisotope tracer. J Radioanal Nucl Chem 296:1295–1302CrossRefGoogle Scholar
  54. Park JS (1989) Studies on red tide phenomena in Korean coastal waters. In: Okaichi T, Anderson DM, Nemoto T (eds) Red tides. Elsevier, New York, pp 37–40Google Scholar
  55. Pinto ISS, Neto IFF, Soares HMVM (2014) Biodegradable chelating agents for industrial, domestic, and agricultural applications—a review. Environ Sci Pollut Res 21:11893–11906CrossRefGoogle Scholar
  56. Rahman MA, Hasegawa H, Kadohashi K, Maki T, Ueda K (2009) Hydroxyiminodisuccinic acid (HIDS): a novel biodegradable chelating ligand for the increase of iron bioavailability and arsenic phytoextraction. Chemosphere 77:207–213CrossRefPubMedGoogle Scholar
  57. Rahman MA, Rahman MM, Kadohashi K, Maki T, Hasegawa H (2011) Effect of external iron and arsenic species on chelant-enhanced iron bioavailability and arsenic uptake in rice (Oryza sativa L.) Chemosphere 84:439–445CrossRefPubMedGoogle Scholar
  58. Rahman MM, Rahman MA, Maki T, Nishiuchi T, Asano T, Hasegawa H (2014) A marine phytoplankton (Prymnesium parvum) up-regulates ABC transporters and several other proteins to acclimatize with Fe-limitation. Chemosphere 95:213–219CrossRefGoogle Scholar
  59. Roelke DL, Grover JP, Brooks BW, Glass J, Buzan D, Southard GM, Fries L, Gable GM, Schwierzke-Wade L, Byrd M, Nelson J (2010) A decade of fish-killing Prymnesium parvum blooms in Texas: roles of inflow and salinity. J Plankton Res 33:243–253CrossRefGoogle Scholar
  60. Sandy M, Butler A (2009) Microbial iron acquisition: marine and terrestrial siderophores. Chem Rev 109:4580–4595CrossRefPubMedPubMedCentralGoogle Scholar
  61. Shaked Y, Kustka AB, Morel FMM (2005) A general kinetic model for iron acquisition by eukaryotic phytoplankton. Limnol Oceanogr 50:872–882CrossRefGoogle Scholar
  62. Shaked Y, Lis H (2012) Disassembling iron availability to phytoplankton. Front Microbiol 3:123CrossRefPubMedPubMedCentralGoogle Scholar
  63. Shikata T, Nagasoe S, Matsubara T, Yoshikawa S, Yamasaki Y, Shimasaki Y, Oshima Y, Jenkinson IR, Honjo T (2008) Factors influencing the initiation of blooms of the raphidophyte Heterosigma akashiwo and the diatom Skeletonema costatum in a port in Japan. Limnol Oceanogr 53:2503–2518CrossRefGoogle Scholar
  64. Sunda WG, Huntsman SA (1995) Iron uptake and growth limitation in oceanic and coastal phytoplankton. Mar Chem 50:189–206CrossRefGoogle Scholar
  65. Sunda WG, Swift DG, Huntsman SA (1991) Low iron requirement for growth in oceanic phytoplankton. Nature 351:55–57CrossRefGoogle Scholar
  66. Susan VJ, Theodore WV, Daniel LR, James PG, Bryan WB (2010) Probabilistic ecological hazard assessment of microcystin-LR allelopathy to Prymnesium parvum. J Plankton Res 33:319–332Google Scholar
  67. Sutak R, Botebol H, Blaiseau PL, Leger T, Bouget FY, Camadro JM, Lesuisse E (2012) A comparative study of iron uptake mechanisms in marine microalgae: iron binding at the cell surface is a critical step. Plant Physiol 160:2271–2284CrossRefPubMedPubMedCentralGoogle Scholar
  68. Taylor FJR, Haigh R (1993) The ecology offish-kills blooms of the chloromonad flagellate Heterosigma in the Strait of Georgia and adjacent waters. In: Smayda TJ, Shimizu Y (eds) Toxic phytoplankton blooms in the sea. Elsevier, Amsterdam, pp 705–710Google Scholar
  69. Trick CG, Andersen RJ, Price NM, Gillam A, Harrison PJ (1983) Examination of hydroxamate-siderophore production by neritic eukaryotic marine phytoplankton. Mar Biol 75:9–17CrossRefGoogle Scholar
  70. Watanabe MM, Kawachi M, Hiroki M, Kasai F (2000) NIES collection list of strains: microalgae and protozoa. Microbial culture collections, 6th edn. National Institute for Environmental Studies, TsukubaGoogle Scholar
  71. Wells ML, Price NM, Bruland KW (1995) Iron chemistry in seawater and its relationship to phytoplankton: a workshop report. Mar Chem 48:157–182CrossRefGoogle Scholar
  72. Yamochi S (1989) Mechanisms for outbreak of Heterosigma akashiwo red tide in Osaka Bay, Japan. In: Nemoto T (ed) Okaichi TA, D. M. Red Tides, Elsevier, New York, pp 253–256Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Science and EngineeringKanazawa UniversityKanazawaJapan
  2. 2.Graduate School of Natural Science and TechnologyKanazawa UniversityKanazawaJapan
  3. 3.Faculty of Science and TechnologyFederation UniversityGippsland, ChurchillAustralia

Personalised recommendations