Advertisement

Journal of Applied Phycology

, Volume 30, Issue 4, pp 2425–2434 | Cite as

Critical comparison of molecular methods for detection and enumeration of the harmful algal species, Heterosigma akashiwo, in environmental water samples

  • Christopher R. Main
  • Dianne I. Greenfield
  • Cameron Doll
  • Yanfei Wang
  • Edward B. Whereat
  • Rebecca Mortensen
  • D. Tye Pettay
  • Kathryn J. Coyne
Article

Abstract

Molecular methods such as quantitative real-time PCR (qPCR) and sandwich hybridization assay (SHA) enable a more rapid and specific enumeration of harmful algal species compared to microscopic cell counts. Integrating these methods into routine monitoring and management strategies, however, has been slow. While comparisons to microscopy have been made, direct comparisons between molecular methods using environmental samples are sparse. Here, we directly compare qPCR to SHA for enumerating the harmful algal species, Heterosigma akashiwo, in environmental samples collected in Delaware’s inland bays. To ensure comparability, a single cellular homogenate was generated from field samples and split for analysis by qPCR and SHA. Results show a significant correlation between qPCR and SHA when Heterosigma is above bloom levels (1 × 105 cells L−1), but not during non-bloom conditions. qPCR and SHA were also more highly correlated when samples were collected at lower temperatures (< 25 °C) and/or with high levels of chlorophyll a (greater than or equal to 30 μg L−1), independent of Heterosigma cell concentration. There was no evidence of cross-reactivity in primers and probes for H. akashiwo during blooms of the closely related species, Chattonella subsalsa. However, qPCR to SHA ratios were elevated during blooms of other phytoplankton species, suggesting suppression of the SHA signal or enhancement of qPCR. Results of this study may have significant implications for research, where precise evaluations of cell numbers are often required. However, precise cell counts at non-bloom levels may not be as critical to management, suggesting either technique could be incorporated into rapid and effective decision making.

Keywords

Heterosigma akashiwo qPCR Sandwich hybridization assay Harmful algal blooms Delaware inland bays Raphidophyte 

Notes

Acknowledgements

This project was funded by Delaware Sea Grant (grant R/HCE-4 to Coyne) and the National Oceanographic and Atmospheric Administration (NOAA) National Centers for Sponsored Coastal Ocean Research (award #NA10NOS4780141 to Greenfield and Coyne). This represents contribution numbers 210 from the NOAA Monitoring and Event Response for Harmful Algal Blooms (MERHAB) Research Program, 1860 from the Belle W. Baruch Institute, University of South Carolina, and 785 from the Marine Resources Research Institute, South Carolina Department of Natural Resources.

Supplementary material

10811_2018_1444_MOESM1_ESM.docx (22 kb)
Table S1 (DOCX 21 kb)
10811_2018_1444_MOESM2_ESM.pdf (13 kb)
Fig. S1 Microscopic identification and enumeration of potentially toxic or bloom forming species performed by the UD Citizen Monitoring Program. Cell counts of > 1.0 × 106 cells L−1 were based on average number of cells in at least 10 fields of vision. Limit of detection is 1.3 × 104 cell L-1 (PDF 12 kb)

References

  1. Anderson DM, Andersen P, Bricelj V, Cullen J, Rensel JE (2001) Monitoring and management strategies for harmful algal blooms in coastal waters. UNESCO, ParisGoogle Scholar
  2. Anderson DM, Kulis DM, Keafer BA, Gribble KE, Marin R III, Scholin CA (2005) Identification and enumeration of Alexandrium spp. from the Gulf of Maine using molecular probes. Deep Sea Res II 52:2467–2490CrossRefGoogle Scholar
  3. Antonella P, Luca G (2013) The quantitative real-time PCR applications in the monitoring of marine harmful algal bloom (HAB) species. Environ Sci Pollut Res 20:6851–6862CrossRefGoogle Scholar
  4. Bates SS, Gaudet J, Kaczmarska I, Ehrman JM (2004) Interaction between bacteria and the domoic-acid-producing diatom Pseudo-nitzschia multiseries (Hasle) Hasle; can bacteria produce domoic acid autonomously? Harmful Algae 3:11–20CrossRefGoogle Scholar
  5. Berdalet E, Fleming LE, Gowen R, Davidson K, Hess P, Backer LC, Moore SK, Hoagland P, Enevoldsen H (2016) Marine harmful algal blooms, human health and wellbeing: challenges and opportunities in the 21st century. J Mar Biol Assoc U K 96:61–91CrossRefGoogle Scholar
  6. Bowers HA, Tomas C, Tengs T, Kempton JW, Lewitus AJ, Oldach DW (2006) Raphidophyceae [Chadefaud ex Silva] systematics and rapid identification: sequence analyses and real-time PCR assays. J Phycol 42:1333–1348CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chang FH, Anderson C, Boustead NC (1990) First record of a Heterosigma (Raphidophyceae) bloom with associated mortality of cage-reared salmon in Big Glory Bay, New Zealand. N Z J Mar Freshw Res 24:461–469CrossRefGoogle Scholar
  8. Cohen J, Cohen P, West SG, Aiken LS (2013) Applied multiple regression/correlation analysis for the behavioral sciences. Taylor & Francis, NYGoogle Scholar
  9. Coyne KJ, Handy SM, Demir E, Whereat EB, Hutchins DA, Portune KJ, Doblin MA, Cary SC (2005) Improved quantitative real-time PCR assays for enumeration of harmful algal species in field samples using an exogenous DNA reference standard. Limnol Oceanogr Methods 3:381–391CrossRefGoogle Scholar
  10. Davidson K, Gowen RJ, Harrison PJ, Fleming LE, Hoagland P, Moschonas G (2014) Anthropogenic nutrients and harmful algae in coastal waters. J Environ Manag 146C:206–216CrossRefGoogle Scholar
  11. Demir E, Coyne KJ, Doblin MA, Handy SM, Hutchins DA (2008) Assessment of microzooplankton grazing on Heterosigma akashiwo using a species-specific approach combining quantitative real-time PCR (QPCR) and dilution methods. Microb Ecol 55:583–594CrossRefPubMedGoogle Scholar
  12. Demir-Hilton E, Hutchins DA, Czymmek KJ, Coyne KJ (2012) Description of Viridilobus marinus (gen. et sp. nov.), a new raphidophyte from Delaware’s inland bays. J Phycol 48:1220–1231CrossRefPubMedGoogle Scholar
  13. Doll C, Main CR, Bianco C, Coyne KJ, Greenfield DI (2014) Comparison of sandwich hybridization assay and quantitative PCR for the quantification of live and preserved cultures of Heterosigma akashiwo (Raphidophyceae). Limnol Oceanogr Meth 12:230–243Google Scholar
  14. Ebenezer V, Medlin LK, Ki JS (2012) Molecular detection, quantification, and diversity evaluation of microalgae. Mar Biotechnol 14:129–142CrossRefPubMedGoogle Scholar
  15. Engesmo A, Eikrem W, Seoane S, Smith K, Edvardsen B, Hofgaard A, Tomas CR (2016) New insights into the morphology and phylogeny of Heterosigma akashiwo (Raphidophyceae), with the description of Heterosigma minor sp. nov. Phycologia 55:279–294CrossRefGoogle Scholar
  16. Godhe A, Cusack C, Pedersen J, Andersen P, Anderson DM, Bresnan E, Cembella A, Dahl E, Diercks S, Elbrächter M, Edler L, Galluzzi L, Gescher C, Gladstone M, Karlson B, Kulis D, LeGresley M, Lindahl O, Marin R III, McDermott G, Medlin LK, Naustvoll L-J, Penna A, Töbe K (2007) Intercalibration of classical and molecular techniques for identification of Alexandrium fundyense (Dinophyceae) and estimation of cell densities. Harmful Algae 6:56–72CrossRefGoogle Scholar
  17. Goffredi SK, Jones WJ, Scholin CA, Marin R III, Vrijenhoek RC (2006) Molecular detection of marine invertebrate larvae. Mar Biotechnol 8:149–160CrossRefPubMedGoogle Scholar
  18. Granéli E, Turner JT (2007) Ecology of harmful algae. Springer, New YorkGoogle Scholar
  19. Greenfield DI, Marin IIIR, Doucette GJ, Mikulski C, Jones K, Jensen S, Roman B, Alvarado N, Feldman J, Scholin CA (2008) Field applications of the second-generation environmental sample processor (ESP) for remote detection of harmful algae. Limnol Oceanogr Meth 6:667–679CrossRefGoogle Scholar
  20. Hallegraeff GM, Anderson DM, Cembella AD (2003) Manual on harmful marine microalgae. United Nations Educational, Scientific and Cultural Organization, ParisGoogle Scholar
  21. Handy SM, Hutchins DA, Cary SC, Coyne KJ (2006) Simultaneous enumeration of multiple raphidophyte species by quantitative real-time PCR: capabilities and limitations. Limnol Oceanogr Meth 4:193–204Google Scholar
  22. Handy SM, Demir E, Hutchins DA, Portune KJ, Whereat EB, Hare CE, Rose JM, Warner M, Farestad M, Cary SC, Coyne KJ (2008) Using quantitative real-time PCR to study competition and community dynamics among Delaware Inland Bays harmful algae in field and laboratory studies. Harmful Algae 7(5):599–613CrossRefGoogle Scholar
  23. Harvey JBJ (2014) A 96-well plate format for detection of marine zooplankton with the sandwich hybridization assay. In: Carroll DJ, Stricker SA (eds) Developmental biology of the sea urchin and other marine invertebrates: methods and protocols. Humana Press, Totowa, pp 263–276CrossRefGoogle Scholar
  24. Harvey JBJ, Djunaedi AF, Vrijenhoek RC (2013) Validation of a sandwich hybridization assay for marine copepod detection. J Exp Mar Bio Ecol 446:306–310CrossRefGoogle Scholar
  25. Heid CA, Stevens J, Livak KJ, Williams PM (1996) Real time quantitative PCR. Genome Res 6:986–994CrossRefPubMedGoogle Scholar
  26. Honjo T (1992) Harmful red tides of Heterosigma akashiwo. Natl Ocean Atmos Adm Tech Rep Natl Mar Fish Serv 111:27–32Google Scholar
  27. Humbert JF, Quiblier C, Gugger M (2010) Molecular approaches for monitoring potentially toxic marine and freshwater phytoplankton species. Anal Bioanal Chem 397:1723–1732CrossRefPubMedGoogle Scholar
  28. Kempton J, Keppler CJ, Lewitus A, Shuler A, Wilde SB (2008) A novel Heterosigma akashiwo (Raphidophyceae) bloom extending from a South Carolina bay to offshore waters. Ecology 7:235–240Google Scholar
  29. Khan S, Arakawa O, Onoue Y (1997) Neurotoxins in a toxic red tide of Heterosigma akashiwo (Raphidophyceae) in Kagoshima Bay, Japan. Aquac Res 28:9–14CrossRefGoogle Scholar
  30. Kim JH, Kim JH, Wang P, Park BS, Han MS (2016) An improved quantitative real-time PCR assay for the enumeration of Heterosigma akashiwo (Raphidophyceae) cysts using a DNA debris removal method and a cyst-based standard curve. PLoS One 11:e0145712CrossRefPubMedPubMedCentralGoogle Scholar
  31. Li Y, Smayda TJ (2000) Heterosigma akashiwo (Raphidophyceae): on prediction of the week of bloom initiation and maximum during the initial pulse of its bimodal bloom cycle in Narragansett Bay. Plankt Biol Ecol 47:80–84Google Scholar
  32. Main CR, Doll C, Bianco C, Greenfield DI, Coyne KJ (2014) Effects of growth phase, diel cycle and macronutrient stress on the quantification of Heterosigma akashiwo using qPCR and SHA. Harmful Algae 37:92–99CrossRefGoogle Scholar
  33. Medlin LK (2016) Molecular techniques for identification and characterization of marine biodiversity. Ann Mar Biol Res 3(2):1015Google Scholar
  34. Medlin LK, Orozco J (2017) Molecular techniques for the detection of organisms in aquatic environments, with emphasis on harmful algal bloom species. Sensors 17(5):1184Google Scholar
  35. O’Halloran C, Silver MW, Holman TR, Scholin CA (2006) Heterosigma akashiwo in Central California waters. Harmful Algae 5:124–132CrossRefGoogle Scholar
  36. Park BS, Baek SH, Ki J-S, Cattolico RA, Han M-S (2012) Assessment of EvaGreen-based quantitative real-time PCR assay for enumeration of the microalgae Heterosigma and Chattonella (Raphidophyceae). J Appl Phycol 24:1555–1567CrossRefGoogle Scholar
  37. Portune KJ, Coyne KJ, Hutchins DA, Handy SM, Cary SC (2009) Quantitative real-time PCR for detecting germination of Heterosigma akashiwo and Chattonella subsalsa cysts from Delaware’s inland bays, USA. Aquat Microb Ecol 55:229–239CrossRefGoogle Scholar
  38. R Core Team (2017) R: a language and environment for statistical computingGoogle Scholar
  39. Rensel JE, Haigh N, Tynan TJ (2010) Fraser river sockeye salmon marine survival decline and harmful blooms of Heterosigma akashiwo. Harmful Algae 10:98–115CrossRefGoogle Scholar
  40. Ryan J, Greenfield DI, Marin R III, Preston C, Roman B, Jensen S, Pargett D, Birch J, Mikulski C, Doucette G, Scholin CA (2011) Harmful phytoplankton ecology studies using an autonomous molecular analytical and ocean observing network. Limnol Oceanogr 56:1255–1272CrossRefGoogle Scholar
  41. Scholin CA, Buck KR, Britschgi T, Cangelosi G, Chavez FP (1996) Identification of Pseudo-nitzschia australis (Bacillariophyceae) using rRNA-targeted probes in whole cell and sandwich hybridization formats. Phycologia 35:190–197CrossRefGoogle Scholar
  42. Sellner KG, Doucette GJ, Kirkpatrick GJ (2003) Harmful algal blooms: causes, impacts and detection. J Ind Microbiol Biotechnol 30:383–406CrossRefPubMedGoogle Scholar
  43. Simon N, Cras A-L, Foulon E, Lemée R (2009) Diversity and evolution of marine phytoplankton. C R Biol 332:159–170CrossRefPubMedGoogle Scholar
  44. Sournia A, Chrdtiennot-Dinet MJ, Ricard M (1991) Marine phytoplankton: how many species in the world ocean? J Plankton Res 13:1093–1099CrossRefGoogle Scholar
  45. Tseng CK, Zhou MJ, Zou JZ (1993) Toxic phytoplankton studies in China. In: Smayda TJ, Shimizu Y (eds) Toxic phytoplankton blooms in the sea. Elsevier, New York, pp 347–352Google Scholar
  46. Tyrrell JV, Bergquist PR, Bergquist PL, Scholin CA (2001) Detection and enumeration of Heterosigma akashiwo and Fibrocapsa japonica (Raphidophyceae) using rRNA-targeted oligonucleotide probes. Phycologia 40:457–467CrossRefGoogle Scholar
  47. Tyrrell JV, Connell LB, Scholin CA (2002) Monitoring for Heterosigma akashiwo using a sandwich hybridization assay. Harmful Algae 1:205–214CrossRefGoogle Scholar
  48. Welschmeyer NA (1994) Fluorometric of chlorophyll a in the presence of analysis chlorophyll b and pheopigments. Limnol Oceanogr 39:1985–1992CrossRefGoogle Scholar
  49. Wood SA, Smith KF, Banks JC, Tremblay LA, Rhodes L, Mountfort D, Cary SC, Pochon X (2013) Molecular genetic tools for environmental monitoring of New Zealand’s aquatic habitats, past, present and the future. N Z J Mar Freshw Res 47:90–119CrossRefGoogle Scholar
  50. Zhang Y, Fu F-X, Whereat E, Coyne KJ, Hutchins DA (2006) Bottom-up controls on a mixed-species HAB assemblage: A comparison of sympatric Chattonella subsalsa and Heterosigma akashiwo (Raphidophyceae) isolates from the Delaware Inland Bays, USA. Harmful Algae 5(3):310–320Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Christopher R. Main
    • 1
    • 2
  • Dianne I. Greenfield
    • 3
    • 4
    • 5
  • Cameron Doll
    • 4
  • Yanfei Wang
    • 2
  • Edward B. Whereat
    • 2
  • Rebecca Mortensen
    • 3
  • D. Tye Pettay
    • 2
  • Kathryn J. Coyne
    • 2
  1. 1.Delaware Department of Natural Resources and Environmental ControlDoverUSA
  2. 2.College of Earth, Ocean, and EnvironmentUniversity of DelawareLewesUSA
  3. 3.Belle W. Baruch Institute of Marine and Coastal SciencesUniversity of South CarolinaCharlestonUSA
  4. 4.South Carolina Department of Natural ResourcesMarine Resources Research InstituteCharlestonUSA
  5. 5.Advanced Science Research Center at the Graduate SchoolCity University of New YorkNew YorkUSA

Personalised recommendations