Journal of Applied Phycology

, Volume 30, Issue 4, pp 2523–2531 | Cite as

Phycoerythrin productivity and diversity from five red macroalgae

  • Andrea Augusto SfrisoEmail author
  • Michele Gallo
  • Franco Baldi


Five red algae, Agardhiella subulata, Gracilariopsis longissima, Gracilaria vermiculophylla, Polysiphonia morrowii, and Pyropia elongata were sampled in winter for the extraction of phycoerythrin. The extracted phycoerythrin molecules were compared with the commercial phycoerythrin to determine the intrinsic fluorescence characteristics of the single pigments. An improved selective method for phycoerythrin extraction was set up for routinary investigation. The use of the mortar and pestle method for tissue homogenization with a freeze-thawing cycle allowed a simple and complete homogenization of the red algae. The extraction of phycoerythrin with diluted EDTA solutions (1 mM) at pH 9 enabled a selective and easy extraction of the pigment with 95–98% extraction efficiency. The way pH affected the phycoerythrin, phycocyanin, and allophycocyanin selective extraction was also evaluated. The 3D fingerprint of each pigment was recorded, and a comparison of different phycoerythrin spectra was performed by fluorescence spectroscopy highlighting differences in A. subulata and P. morrowii phycoerythrins in comparison with commercial standards purified from Pyropia. The productivity and the advantages of phycoerythrin that was extracted from unattached red algal species are discussed.


Phycoerythrin Phycocyanin Allophycocyanin Extraction Fluorescence 



The authors are grateful to Dr. Orietta Zucchetta for the English editing and to Prof. Adriano Sfriso for his taxonomical expertise and support.


  1. Algarra P, Thomas JC, Mousseau A (1990) Phycobilisome heterogeneity in the red alga Porphyra umbilicalis. Plant Physiol 92:570–576CrossRefPubMedPubMedCentralGoogle Scholar
  2. Beer S, Eshel A (1985) Determining phycoerythrin and phycocyanin concentrations in aqueous crude extracts of red algae. Aust J Mar Freshw Res 36:785–792CrossRefGoogle Scholar
  3. Bermejo R, Acién FG, Ibanez MJ, Fernandez JM, Molina E, Alvarez-Pez JM (2003) Preparative purification of B-phycoerythrin from the microalga Porphyridium cruentum by expanded-bed adsorption chromatography. J Chromatogr B 790:317–325CrossRefGoogle Scholar
  4. Benavides J, Palomares MR (2006) Simplified two-stage method to B-phycoerythrin recovery from Porphyridium cruentum. J Chromatogr B 844:39–44CrossRefGoogle Scholar
  5. Bryant DA (1982) Phycoerythrocyanin and phycoerythrin: properties and occurrence in cyanobacteria. Microbiology 128:835–844CrossRefGoogle Scholar
  6. Cai C, Wang Y, Li C, Guo Z, Jia R, WU W, Hu Y, He P (2014) Purification and photodynamic bioactivity of phycoerythrin and phycocyanin from Porphyra yezoensis Ueda. J Ocean Univ China 12:479–484CrossRefGoogle Scholar
  7. Chang WR, Jiang T, Wan ZL, Zhang JP, Yang ZX, Liang DC (1996) Crystal structure of R-phycoerythrin from Polysiphonia urceolata at 2.8 Å resolution. J Mol Biol 262:721–731CrossRefPubMedGoogle Scholar
  8. Dumay J, Clément N, Morançais M, Fleurence J (2013) Optimization of hydrolysis conditions of Palmaria palmata to enhance R-phycoerythrin extraction. Bioresour Technol 131:21–27CrossRefPubMedGoogle Scholar
  9. Edding M, Macchiavello J, Black H (1987) Culture of Gracilaria sp. in outdoor tanks: productivity. Hydrobiologia 151/152:369–373CrossRefGoogle Scholar
  10. European Patent Office (2017) Espacenet patent search engine.; searched on 17 May 2017
  11. Francavilla M, Franchi M, Monteleone M, Caroppo C (2013) The red seaweed Gracilaria gracilis as a multi products source. Mar Drugs 11:3754–3776CrossRefPubMedPubMedCentralGoogle Scholar
  12. Glazer AN, Fang S (1973) Chromophore content of blue-green algal phycobiliproteins. J Biol Chem 248:659–662PubMedGoogle Scholar
  13. Glazer AN, Hixson CS (1975) Characterization of R-phycocyanin. Chromophore content of R-phycocyanin and C-phycoerythrin. J Biol Chem 250:5487–5495PubMedGoogle Scholar
  14. González-Ramírez E, Andújar-Sánchez M, Ortiz-Salmerón E, Bacarizo J, Cuadri C, Mazzuca-Sobczuk T, Ibáñez MJ, Cámara-Artigas A, Martínez-Rodríguez S (2014) Thermal and pH stability of the B-phycoerythrin from the red algae Porphyridium cruentum. Food Biophys 9:184–192CrossRefGoogle Scholar
  15. Huang YM, Rorrer GL (2002) Dynamics of oxygen evolution and biomass production during cultivation of Agardhiella subulata microplantlets in a bubble-column photobioreactor under medium perfusion. Biotechnol Prog 18:62–71CrossRefPubMedGoogle Scholar
  16. Hugh DJM (2003) A guide to seaweed industry. FAO Fisheries Technical Paper 441, RomeGoogle Scholar
  17. Ismail MM, Osman MEH (2016) Seasonal fluctuation of photosynthetic pigments of most common red seaweeds species collected from Abu Qir, Alexandria, Egypt. Rev Biol Mar Oceanogr 51:515–525CrossRefGoogle Scholar
  18. Kao O, Berns DS, Maccoll R (1971) C-Phycocyanin monomer molecular weight. Eur J Biochem 19:595–599CrossRefPubMedGoogle Scholar
  19. Kawsar S, Fujii Y, Matsumoto R, Yasumitsu H, Ozeki Y (2011) Protein R-phycoerythrin from marine red alga Amphiroa anceps: extraction, purification and characterization. Phytol Balcan 17(3):347–354Google Scholar
  20. Lauceri R, Bresciani M, Lami A, Morabito G (2017) Chlorophyll a interference in phycocyanin and allophycocyanin spectrophotometric quantification. J Limnol.
  21. Ley AC, Butler WL (1977) Isolation and function of allophycocyanin B of Porphyridium cruentum. Plant Physiol 59:974–980CrossRefPubMedPubMedCentralGoogle Scholar
  22. Liu LN, Chen XL, Zhang XY, Zhang YZ, Zhou BC (2005) One-step chromatography method for efficient separation and purification of R-phycoerythrin from Polysiphonia urceolata. J Biotechnol 116:91–100CrossRefPubMedGoogle Scholar
  23. Liu LN, Su HN, Yan SG, Shao SM, Xie BB, Chen XL, Zhang XY, Zhou BC, Zhang YZ (2009) Probing the pH sensitivity of R-phycoerythrin: investigations of active conformational and functional variation. Biochim Biophys Acta Bioenerg 1787:939–946CrossRefGoogle Scholar
  24. Mclachlan J, Bird CJ (1986) Gracilaria (Gigartinales, Rhodophyta) and productivity. Aquat Bot 26:27–49CrossRefGoogle Scholar
  25. Menges F (2016) Spekwin32—optical spectroscopy software, Version 1.72.0.; searched on 11 August 2016
  26. Mensi F, Ksouri J, Seale E, Romdhane MS, Fleurence J (2012) A statistical approach for optimization of R-phycoerythrin extraction from the red algae Gracilaria verrucosa by enzymatic hydrolysis using central composite design and desirability function. J Appl Phycol 24:915–926CrossRefGoogle Scholar
  27. Moraes CC, Kalil SJ (2009) Strategy for a protein purification design using C-phycocyanin extract. Bioresour Technol 100:5312–5317CrossRefPubMedGoogle Scholar
  28. Moreth CM, Yentsch CS (1970) A sensitive method for the determination of open ocean phytoplankton phycoerythrin pigments by fluorescence. Limnol Oceanogr 15:313–317CrossRefGoogle Scholar
  29. Munier M, Jubeau S, Wijaya A, Morançais M, Dumay J, Marchal L, Jaouen P, Fleurence J (2014) Physicochemical factors affecting the stability of two pigments: R-phycoerythrin of Grateloupia turuturu and B-phycoerythrin of Porphyridium cruentum. J Food Chem 150:400–407CrossRefGoogle Scholar
  30. Nguyen HPT, Morançais M, Fleurence J, Dumay J (2017) Mastocarpus stellatus as a source of R-phycoerythrin: optimization of enzyme assisted extraction using response surface methodology. J Appl Phycol 29:1563–1570CrossRefGoogle Scholar
  31. Niu JF, Wang GC, Tseng CK (2006) Method for large-scale isolation and purification of R-phycoerythrin from red alga Polysiphonia urceolata Grev. Protein Expr Purif 46:23–31CrossRefGoogle Scholar
  32. Oi VT, Glazer AN, Stryer L (1982) Fluorescent phycobiliprotein conjugates for analysis of cells and molecules. J Cell Biol 93:981–986CrossRefPubMedGoogle Scholar
  33. Ogawa H, Haruo M, Takahide S, Yoshihiro Y, Tuyosi O, Naomichi I (1991) Effects of pH on the conformation of phycoerythrin from nori Porphyra sp. Nippon Suisan Gakk 57:899–903CrossRefGoogle Scholar
  34. Pan Q, Chen M, Li J, Wu Y, Zhen C, Liang B (2013) Antitumor function and mechanism of phycoerythrin from Porphyra haitanensis. Biol Res 46:87–95CrossRefPubMedGoogle Scholar
  35. Ramirez AO, Merrill JE, Smith DM (2000) pH affects the thermal inactivation parameters of R-phycoerythrin from Porphyra yezoensis. J Food Sci 65:1046–1050CrossRefGoogle Scholar
  36. Rowan KS (1989) Photosynthetic pigments of algae. Cambridge University Press, MelbourneGoogle Scholar
  37. Sasim SM, Egiert JS, Kosakowska A (2014) Quantitative analysis of extracted phycobilin pigments in cyanobacteria—an assessment of spectrophotometric and spectrofluorometric methods. J Appl Phycol 26:2065–2074CrossRefGoogle Scholar
  38. Sfriso AA, Gallo M, Baldi F (2016a) Carbohydrate and agar yield: preliminary insights on seasonal variations in Ulva and three Gracilariaceae. Biol Mar Mediterr 23:162–166Google Scholar
  39. Sfriso AA, Gallo M, Baldi F (2017a) Seasonal variation and yield of sulfated polysaccharides in seaweeds from the Venice Lagoon. Bot Mar 60:339–349Google Scholar
  40. Sfriso AA, Sfriso A (2017) In situ biomass production of Gracilariaceae and Ulva rigida: the Venice Lagoon as a study case. Bot Mar 60:271–283Google Scholar
  41. Sfriso A, Buosi A, Facca C, Sfriso AA (2017b) Role of environmental factors in affecting macrophyte dominance in transitional environments: the Italian Lagoons as a study case. Mar Ecol 38(2):e12414. CrossRefGoogle Scholar
  42. Sfriso A, Facca C, Bon D, Buosi A (2016b) Macrophytes and ecological status assessment in the Po delta transitional systems, Adriatic Sea (Italy). Application of Macrophyte Quality Index (MaQI). Acta Adriat 57(2):209–226Google Scholar
  43. Sfriso A, Marcomini A, Pavoni B (1994a) Gracilaria distribution, production and composition in the lagoon of Venice. Bioresour Technol 50:165–173CrossRefGoogle Scholar
  44. Sfriso A, Marcomini A, Pavoni B (1994b) Distribution, production and composition of Gracilaria in the central lagoon of Venice. COST-48 Symposium of Sub Group III, Trieste, pp 1–17Google Scholar
  45. Soltzberg LJ, Lor S, Okey-Igwe N, Newman R (2012) 3D fluorescence characterization of synthetic organic dyes. Am J Anal Chem 3:622–631CrossRefGoogle Scholar
  46. Sonania RR, Singhb NK, Kumarc J, Thakara D, Madamwara D (2014) Concurrent purification and antioxidant activity of phycobiliproteins from Lyngbya sp. A09DM: an antioxidant and anti-aging potential of phycoerythrin in Caenorhabditis elegans. Process Biochem 49:1757–1766CrossRefGoogle Scholar
  47. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96CrossRefPubMedGoogle Scholar
  48. Toffanin R, Cecere E, Rizzo R, Knutsen SH (1997) Investigation of the carrageenans extracted from Solieria filiformis and Agardhiella subulata from Mar Piccolo, Taranto. Mar Chem 58:319–325CrossRefGoogle Scholar
  49. Vilar VJP, Botelho CMS, Boaventura RAR (2006) Equilibrium and kinetic modelling of Cd(II) biosorption by algae Gelidium and agar extraction algal waste. Water Res 40:291–302CrossRefPubMedGoogle Scholar
  50. Vilar VJP, Botelho CMS, Boaventura RAR (2005) Influence of pH, ionic strength and temperature on lead biosorption by Gelidium and agar extraction algal waste. Process Biochem 40:3267–3275CrossRefGoogle Scholar
  51. Viskari PJ, Colyer CL (2003) Rapid extraction of phycobiliproteins from cultured cyanobacteria samples. Anal Biochem 319:263–271CrossRefPubMedGoogle Scholar
  52. Zimba PV (2012) An improved phycobilin extraction method. Harmful Algae 17:35–39CrossRefGoogle Scholar
  53. Zhongzheng P, Baicheng Z, Chengkui Z, Tseng CK (1987) The effect of pH on both spectral types of R-phycoerythrin. Chin J Oceanol Limnol 5(1):73–79CrossRefGoogle Scholar
  54. Wang L, Qu Y, Fu X, Zhao M, Wang S, Sun L (2014) Isolation, purification and properties of an R-phycocyanin from the phycobilisomes of a marine red macroalga Polysiphonia urceolata. PLoS One 9(2):e87833CrossRefPubMedPubMedCentralGoogle Scholar
  55. Wang L, Wang S, Fu X, Sun L (2015) Characteristics of an R-Phycoerythrin with two γ subunits prepared from red macroalga Polysiphonia urceolata. PLoS One 10(3):e0120333CrossRefPubMedPubMedCentralGoogle Scholar
  56. Wiley PS, Neefus CD (2007) An improved method for estimating R-phycoerythrin and R-phycocyanin contents from crude aqueous extracts of Porphyra (Bangiales, Rhodophyta). J Appl Phycol 19:123–129CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Molecular Sciences and NanosystemsUniversità Ca’ Foscari VeneziaVenezia MestreItaly

Personalised recommendations