Advertisement

Journal of Applied Phycology

, Volume 30, Issue 4, pp 2273–2285 | Cite as

Monitoring oil production for biobased feedstock in the microalga Nannochloropsis sp.: a novel method combining the BODIPY BD-C12 fluorescent probe and simple image processing

  • Telma Encarnação
  • Cláudia T. Arranja
  • Tânia F. G. G. Cova
  • Alberto A. C. C. Pais
  • Maria G. Campos
  • Abílio J. F. N. Sobral
  • Hugh D. Burrows
Article

Abstract

A simple reliable method with fast response for lipid detection and quantification is proposed, combining a new highly lipophilic fluorescent probe BODIPY BD-C12 and image analysis to determine the algal lipid content and the lipid production in the microalgae Nannochloropsis sp. Lipid bodies stained with BODIPY BD-C12 have a characteristic multicolor fluorescence, and their volumes were determined using a sphere volume approach. The method developed was applied in the evaluation of lipid accumulation by Nannochloropsis sp. under different cultivation conditions (varying nitrate and salinity concentrations and combined effect of these two variables). The results show an increase of lipid content in Nannochloropsis sp. cultivated in nitrogen replete and depleted conditions, from 9.4 to 40.8 μm3 cell−1 and 35.5 to 73.5%, respectively. The findings are also compared with conventional methods for determination of neutral lipids and with results obtained from the dyes Nile Red and BODIPY 505/515. A reasonable agreement between neutral lipid production measured by BODIPY BD-C12 and gravimetric methods (correlation coefficient of 0.98) was obtained. The neutral lipids production decreased from 964.6 to 244.8 mg L−1 and from 809.1 to 396.7 mg L−1, as the nitrate concentration increased from 0 to 0.3 g L−1. It is observed that, with the two commercially available dyes, lipid quantification using Nile Red leads to an overestimation of lipids, while the use of BODIPY 505/515 promoted unreliable measures due to rapid bleaching of the chromophore. The method proposed shows excellent potential to become a standard, yet advanced, strategy for rapid evaluation and quantification of intracellular lipids in microalgae, a crucial step of the scaling-up process involved in the production of biobased products.

Keywords

Microalgae Nitrogen starvation Lipid quantification Biofuels Fluorescent dyes 

Notes

Acknowledgements

The authors acknowledge the Fundação para a Ciência e a Tecnologia (FCT), Portuguese Agency for Scientific Research, for the PhD research grants to TE, VTA, and TFGGC SFRH/BD/81385/2011, SFRH/BD/48269/2008, and SFRH/BD/95459/2013. The authors are also grateful for support from “The Coimbra Chemistry Centre” which is funded by the FCT, through the projects FCT UID/QUI/UI0313/2013 and COMPETE Programme (Operational Programme for Competitiveness).

Supplementary material

10811_2018_1437_MOESM1_ESM.jpg (125 kb)
ESM 1 (TIFF 124 kb)
10811_2018_1437_MOESM2_ESM.jpg (412 kb)
ESM 2 (TIFF 411 kb)
10811_2018_1437_MOESM3_ESM.avi (7.1 mb)
ESM 3 (AVI 7.09 mb)
10811_2018_1437_MOESM4_ESM.avi (21.7 mb)
ESM 4 (AVI 21.7 mb)

References

  1. Ahmad I, Fatma Z, Yazdani SS, Kumar S (2013) DNA barcode and lipid analysis of new marine algae potential for biofuel. Algal Res 2:10–15CrossRefGoogle Scholar
  2. Arranja CT, Aguiar A, Encarnação T, Fonseca SM, Justino LLG, Castro RAE, Benniston A, Harriman A, Burrows HD, Sobral AJFN (2017) Double-tailed long chain BODIPYs—synthesis, characterization and preliminary studies on their use as lipid fluorescence. J Mol Struct 1146:62–69CrossRefGoogle Scholar
  3. Bartley ML, Boeing WJ, Corcoran AA, Holguin FO, Schaub T (2013) Effects of salinity on growth and lipid accumulation of biofuel microalga Nannochloropsis salina and invading organisms. Biomass Bioenergy 54:83–88CrossRefGoogle Scholar
  4. Benito V, Goñi-de-Cerio F, Brettes P (2015) BODIPY vital staining as a tool for flow cytometric monitoring of intracellular lipid accumulation in Nannochloropsis gaditana. J Appl Phycol 27:233–241CrossRefGoogle Scholar
  5. Bigelow NW, Hardin WR, Barker JP, Ryken SA, MacRae AC, Cattolico RA (2011) A comprehensive GC-MS sub-microscale assay for fatty acids and its applications. J Am Oil Chem Soc 88:1329–1338CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Phys 37:911–917CrossRefGoogle Scholar
  7. Brennan L, Fernandez AB, Mostaert AS, Owende P (2012) Enhancement of BODIPY505/515 lipid fluorescence method for applications in biofuel-directed microalgae production. J Microbiol Meth 90:137–143CrossRefGoogle Scholar
  8. Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577CrossRefGoogle Scholar
  9. Bringezu S, O'Brien M, Schutz H (2012) Beyond biofuels: assessing global land use for domestic consumption of biomass a conceptual and empirical contribution to sustainable management of global resources. Land Use Policy 29:224–232CrossRefGoogle Scholar
  10. Capus A, Monnerat M, Ribeiro LC, de Souza W, Martins JL, Sant'Anna C (2016) Application of high-content image analysis for quantitatively estimating lipid accumulation in oleaginous yeasts with potential for use in biodiesel production. Bioresour Technol 203:309–317CrossRefPubMedGoogle Scholar
  11. Chansawang N, Obara B, Geider RJ, Laissue PP (2015) Three-dimensional visualisation and quantification of lipids in microalgae using confocal laser scanning microscopy. Springer, Hydrocarbon and Lipid Microbiology Protocols, pp 145–161Google Scholar
  12. Chen W, Sommerfeld M, Hu QA (2011) Microwave-assisted Nile Red method for in vivo quantification of neutral lipids in microalgae. Bioresour Technol 102:135–141CrossRefPubMedGoogle Scholar
  13. Chen W, Zhang CW, Song LR, Sommerfeld M, Hu Q (2009) A high throughput Nile Red method for quantitative measurement of neutral lipids in microalgae. J Microbiol Meth 77:41–47CrossRefGoogle Scholar
  14. Cirulis JT, Strasser BC, Scott JA, Ross GM (2012) Optimization of staining conditions for microalgae with three lipophilic dyes to reduce precipitation and fluorescence variability. Cytom A 81a:618–626CrossRefGoogle Scholar
  15. Cooper MS, Hardin WR, Petersen TW, Cattolico RA (2010) Visualizing "green oil" in live algal cells. J Biosci Bioeng 109:198–201CrossRefPubMedGoogle Scholar
  16. Davey MP, Horst I, Duong GH, Tomsett EV, Litvinenko ACP, Howe CJ, Smith AG (2014) Triacylglyceride production and autophagous responses in Chlamydomonas reinhardtii depend on resource allocation and carbon source. Eukaryot Cell 13:392–400CrossRefPubMedPubMedCentralGoogle Scholar
  17. Doan TTY, Obbard JP (2011a) Enhanced lipid production in Nannochloropsis sp using fluorescence-activated cell sorting. GCB Bioenergy 3:264–270CrossRefGoogle Scholar
  18. Doan TTY, Obbard JP (2011b) Improved Nile Red staining of nannochloropsis sp. J Appl Phycol 23:895–901CrossRefGoogle Scholar
  19. Doan TTY, Obbard JP (2012) Enhanced intracellular lipid in Nannochloropsis sp via random mutagenesis and flow cytometric cell sorting. Algal Res 1:17–21CrossRefGoogle Scholar
  20. Dong HP, Williams E, Wang DZ, Xie ZX, Hsia RC, Jenck A, Halden RU, Li J, Chen F, Place AR (2013) Responses of Nannochloropsis oceanica IMET1 to long-term nitrogen starvation and recovery. Plant Physiol 162:1110–1126CrossRefPubMedPubMedCentralGoogle Scholar
  21. Encarnação T, Burrows HD, Pais AC, Campos MG, Kremer A (2012) Effect of N and P on the uptake of magnesium and iron and on the production of carotenoids and chlorophyll by the microalgae Nannochloropsis sp. J Agric Sci Technol 2:824–832Google Scholar
  22. Gnansounou E, Dauriat A, Villegas J, Panichelli L (2009) Life cycle assessment of biofuels: energy and greenhouse gas balances. Bioresour Technol 100:4919–4930CrossRefPubMedGoogle Scholar
  23. Govender T, Ramanna L, Rawat I, Bux F (2012) BODIPY staining, an alternative to the Nile Red fluorescence method for the evaluation of intracellular lipids in microalgae. Bioresour Technol 114:507–511CrossRefPubMedGoogle Scholar
  24. Guarnieri MT, Nag A, Smolinski SL, Darzins A, Seibert M, Pienkos PT (2011) Examination of triacylglycerol biosynthetic pathways via de novo transcriptomic and proteomic analyses in an unsequenced microalga. PLoS One 6(10):e25851CrossRefPubMedPubMedCentralGoogle Scholar
  25. Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. Plenum Publishing Corp, New York, pp 29–60CrossRefGoogle Scholar
  26. Gusbeth CA, Eing C, Göttel M, Frey W (2016) Fluorescence diagnostics for lipid status monitoring of microalgae during cultivation. J Renew Energy Environ Eng 2016:1–10Google Scholar
  27. Hodgson PA, Henderson RJ, Sargent JR, Leftley JW (1991) Patterns of variation in the lipid class and fatty-acid composition of Nannochloropsis oculata (Eustigmatophyceae) during batch culture .1. The growth-cycle. J Appl Phycol 3:169–181CrossRefGoogle Scholar
  28. Iverson SJ, Lang SLC, Cooper MH (2001) Comparison of the Bligh and Dyer and Folch methods for total lipid determination in a broad range of marine tissue. Lipids 36:1283–1287CrossRefPubMedGoogle Scholar
  29. Jensen S, Haggberg L, Jorundsdottir H, Odham G (2003) A quantitative lipid extraction method for residue analysis of fish involving nonhalogenated solvents. J Agr Food Chem 51:5607–5611CrossRefGoogle Scholar
  30. Kumar PS, Suseela MR, Toppo K (2011) Physico-chemical characterization of algal oil: a potential biofuel. Asian J Exp Biol Sci 2:493–497Google Scholar
  31. Kundu M, Thompson CB (2005) Macroautophagy versus mitochondrial autophagy: a question of fate? Cell Death Differ 12:1484–1489CrossRefPubMedGoogle Scholar
  32. Lu Y, Wang X, Balamurugan S, Yang W-D, Liu J-S, Dong H-P, Li H-Y (2017) Identification of a putative seipin ortholog involved in lipid accumulation in marine microalga Phaeodactylum tricornutum. J Appl Phycol 29:2821–2829CrossRefGoogle Scholar
  33. Ma XN, Chen TP, Yang B, Liu J, Chen F (2016) Lipid production from Nannochloropsis. Mar Drugs 14(4):61CrossRefPubMedCentralGoogle Scholar
  34. Mallick N, Bagchi SK, Koley S, Singh AK (2016) Progress and challenges in microalgal biodiesel production. Front Microbiol 7:1019PubMedPubMedCentralGoogle Scholar
  35. Mou SL, Xu D, Ye NH, Zhang XW, Liang CW, Liang Q, Zheng Z, Zhuang ZM, Miao JL (2012) Rapid estimation of lipid content in an Antarctic ice alga (Chlamydomonas sp.) using the lipophilic fluorescent dye BODIPY505/515. J Appl Phycol 24:1169–1176CrossRefGoogle Scholar
  36. Murphy DJ (2001) The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res 40:325–438CrossRefPubMedGoogle Scholar
  37. Natunen K, Seppälä J, Schwenk D, Rischer H, Spilling K, Tamminen T (2015) Nile Red staining of phytoplankton neutral lipids: species-specific fluorescence kinetics in various solvents. J Appl Phycol 27:1161–1168CrossRefPubMedGoogle Scholar
  38. Orr V, Rehmann L (2015) Improvement of the Nile Red fluorescence assay for determination of total lipid content in microalgae independent of chlorophyll content. J Appl Phycol 27:2181–2189CrossRefGoogle Scholar
  39. Pal D, Khozin-Goldberg I, Didi-Cohen S, Solovchenko A, Batushansky A, Kaye Y, Sikron N, Samani T, Fait A, Boussiba S (2013) Growth, lipid production and metabolic adjustments in the euryhaline eustigmatophyte Nannochloropsis oceanica CCALA 804 in response to osmotic downshift. Appl Microbiol Biot 97:8291–8306CrossRefGoogle Scholar
  40. Pereira H, Barreira L, Custodio L, Alrokayan S, Mouffouk F, Varela J, Abu-Salah KM, Ben-Hamadou R (2013) Isolation and fatty acid profile of selected microalgae strains from the Red Sea for biofuel production. Energies 6:2773–2783CrossRefGoogle Scholar
  41. Pereira H, Barreira L, Mozes A, Florindo C, Polo C, Duarte CV, Custodio L, Varela J (2011) Microplate-based high throughput screening procedure for the isolation of lipid-rich marine microalgae. Biotechnol Biofuels 4:61CrossRefPubMedPubMedCentralGoogle Scholar
  42. Perez-Perez ME, Crespo JL (2010) Autophagy in the model alga Chlamydomonas reinhardtii. Autophagy 6:562–563CrossRefPubMedGoogle Scholar
  43. Qiao Y, Rong J, Chen H, He C, Wang Q (2015) Non-invasive rapid harvest time determination of oil-producing microalgae cultivations for biodiesel production by using chlorophyll fluorescence. Front Energy Res 3:1–10CrossRefGoogle Scholar
  44. Rhodes CJ (2009) Oil from algae: salvation from peak oil? Sci Progr 92:39–90CrossRefPubMedGoogle Scholar
  45. Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112CrossRefPubMedGoogle Scholar
  46. Roussis SG, Cranford R, Sytkovetskiy N (2012) Thermal treatment of crude algae oils prepared under hydrothermal extraction conditions. Energ Fuel 26:5294–5299CrossRefGoogle Scholar
  47. Rumin J, Bonnefond H, Saint-Jean B, Rouxel C, Sciandra A, Bernard O, Cadoret JP, Bougaran G (2015) The use of fluorescent Nile red and BODIPY for lipid measurement in microalgae. Biotechnol Biofuels 8:42CrossRefPubMedPubMedCentralGoogle Scholar
  48. Ryckebosch E, Bermudez SPC, Termote-Verhalle R, Bruneel C, Muylaert K, Parra-Saldivar R, Foubert I (2014) Influence of extraction solvent system on the extractability of lipid components from the biomass of Nannochloropsis gaditana. J Appl Phycol 26:1501–1510CrossRefGoogle Scholar
  49. Shemi A, Ben-Dor S, Vardi A (2015) Elucidating the composition and conservation of the autophagy pathway in photosynthetic eukaryotes. Autophagy 11:701–715CrossRefPubMedPubMedCentralGoogle Scholar
  50. Simionato D, Block MA, La Rocca N, Jouhet J, Marechal E, Finazzi G, Morosinotto T (2013) The response of Nannochloropsis gaditana to nitrogen starvation includes de novo biosynthesis of triacylglycerols, a decrease of chloroplast galactolipids, and reorganization of the photosynthetic apparatus. Eukaryot Cell 12:665–676CrossRefPubMedPubMedCentralGoogle Scholar
  51. Smedes F, Askland TK (1999) Revisiting the development of the Bligh and Dyer total lipid determination method. Mar Poll Bull 38:193–201CrossRefGoogle Scholar
  52. Work VH, Radakovits R, Jinkerson RE, Meuser JE, Elliott LG, Vinyard DJ, Laurens LML, Dismukes GC, Posewitz MC (2010) Increased lipid accumulation in the Chlamydomonas reinhardtii sta7-10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains. Eukaryot Cell 9:1251–1261CrossRefPubMedPubMedCentralGoogle Scholar
  53. Wu SC, Zhang BY, Huang AY, Huan L, He LW, Lin AP, Niu JF, Wang GC (2014) Detection of intracellular neutral lipid content in the marine microalgae Prorocentrum micans and Phaeodactylum tricornutum using Nile Red and BODIPY 505/515. J Appl Phycol 26:1659–1668CrossRefGoogle Scholar
  54. Xu D, Gao ZQ, Li F, Fan X, Zhang XW, Ye NH, Mou SL, Liang CW, Li DM (2013) Detection and quantitation of lipid in the microalga Tetraselmis subcordiformis (Wille) butcher with BODIPY 505/515 staining. Bioresour Technol 127:386–390CrossRefPubMedGoogle Scholar
  55. Zhang XL, Yan S, Tyagi RD, Drogui P, Surampalli RY (2014) Ultrasonication assisted lipid extraction from oleaginous microorganisms. Bioresour Technol 158:253–261CrossRefPubMedGoogle Scholar
  56. Zhang YM, Chen H, He CL, Wang Q (2013) Nitrogen starvation induced oxidative stress in an oil-producing green alga Chlorella sorokiniana C3. PLoS One 8(7):e69225CrossRefPubMedPubMedCentralGoogle Scholar
  57. Zhu CJ, Lee YK (1997) Determination of biomass dry weight of marine microalgae. J Appl Phycol 9:189–194CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Telma Encarnação
    • 1
  • Cláudia T. Arranja
    • 1
  • Tânia F. G. G. Cova
    • 1
  • Alberto A. C. C. Pais
    • 1
  • Maria G. Campos
    • 1
  • Abílio J. F. N. Sobral
    • 1
  • Hugh D. Burrows
    • 1
  1. 1.CQC, Department of ChemistryUniversity of CoimbraCoimbraPortugal

Personalised recommendations