Journal of Applied Phycology

, Volume 30, Issue 4, pp 2317–2324 | Cite as

Harvesting Neochloris oleoabundans using commercial organic flocculants

  • P. C. S. Kirnev
  • J. C. de CarvalhoEmail author
  • J. T. Miyaoka
  • L. C. Cartas
  • L. P. S. Vandenberghe
  • C. R. Soccol


Microalgal cultures are inherently dilute, and increasing their concentration is essential for volume reduction and further processing. Flocculation is a classical operation in water treatment that is also used as a concentration step in microalgal biotechnology. However, flocculation is highly dependent on the physicochemical characteristics of the system, such as cell charge and concentration, pH, and solutes in the system, and the coagulant or flocculant to be used. This paper describes the efficiency of nine flocculating agents applied to Neochloris oleoabundans flocculation: low molecular weight chitosan; Zetag® 8165, 8185, 7652, and 4120; Magnafloc® LT22 and 351; and Tanfloc® SG and SH. The influence of flocculant concentration (from 3 to 16 mg L−1) and pH (from 6 to 10) was evaluated, showing a small influence of pH and a large influence of the type and concentration of flocculating agent. These effects are discussed regarding the flocculant charge and the zeta potential of the cells. The best flocculants were Zetag® 8185, Zetag® 8165, and chitosan, with floc sedimentation efficiencies higher than 95%. These flocculants were further evaluated for their efficiency in various concentrations at the native pH of N. oleoabundans cultures, with good efficiency.

Graphical abstract


Flocculant Microalgae Neochloris Zeta potential Cost 



The authors thank the Brazilian funding agencies CAPES and CNPq for their support in this work and Dr. Rilton Alves de Freitas for the assistance in zeta potential analyses.


  1. Alibaba (2016) Chitosan price, chitosan price suppliers and manufacturers. In: . Accessed 6 May 2016
  2. Bakpai K, Prokop A, Zappi M (2014) Algal biorefineries: cultivations of cell and production. Science Publishers, New York, NYCrossRefGoogle Scholar
  3. Beach ES, Eckelman MJ, Cui Z, Brentner L, Zimmerman JB (2012) Preferential technological and life cycle environmental performance of chitosan flocculation for harvesting of the green algae Neochloris oleoabundans. Bioresour Technol 121:445–449CrossRefPubMedGoogle Scholar
  4. Blanco A, Negro C, Fuente E, Tijero J (2005) Effect of shearing forces and flocculant overdose on filler flocculation mechanisms and floc properties. Ind Eng Chem Res 44:9105–9112CrossRefGoogle Scholar
  5. Bolto B, Gregory J (2007) Organic polyelectrolytes in water treatment. Water Res 41:2301–2324CrossRefPubMedGoogle Scholar
  6. Borges L, Caldas S, Montes D’Oca MG, Abreu PC (2016) Effect of harvesting processes on the lipid yield and fatty acid profile of the marine microalga Nannochloropsis oculata. Aquac Rep 4:164–168CrossRefGoogle Scholar
  7. Borges L, Morón-Villarreyes JA, D'Oca MGM, Abreu PC (2011) Effects of flocculants on lipid extraction and fatty acid composition of the microalgae Nannochloropsis oculata and Thalassiosira weissflogii. Biomass Bioenergy 35:4449–4454CrossRefGoogle Scholar
  8. Brady PV, Pohl PI, Hewson JC (2014) A coordination chemistry model of algal autoflocculation. Algal Res 5:226–230CrossRefGoogle Scholar
  9. Chatsungnoen T, Chisti Y (2016) Harvesting microalgae by flocculation–sedimentation. Algal Res 13:271–283CrossRefGoogle Scholar
  10. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306CrossRefPubMedGoogle Scholar
  11. Divakaran R, Pillai VNS (2002) Flocculation of algae using chitosan. J Appl Phycol 14:419–422CrossRefGoogle Scholar
  12. Fein JB, Daughney CJ, Yee N, Davis TA (1997) A chemical equilibrium model for metal adsorption onto bacterial surfaces. Geochim Cosmochim Acta 61:3319–3328CrossRefGoogle Scholar
  13. Gorin KV, Sergeeva YE, Butylin VV, Komova AV, Pojidaev VM, Badranova GU, Shapovalova AA, Konova IA, Gotovtsev PM (2015) Methods coagulation/flocculation and flocculation with ballast agent for effective harvesting of microalgae. Bioresour Technol 193:178–184CrossRefPubMedGoogle Scholar
  14. Gouveia L, Marques AE, Da Silva TL, Reis A (2009) Neochloris oleabundans UTEX #1185: a suitable renewable lipid source for biofuel production. J Ind Microbiol Biotechnol 36:821–826CrossRefPubMedGoogle Scholar
  15. Grima EM, Belarbi E-H, Fernández FGA, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515CrossRefGoogle Scholar
  16. Hadjoudja S, Deluchat V, Baudu M (2010) Cell surface characterisation of Microcystis aeruginosa and Chlorella vulgaris. J Colloid Interface Sci 342:293–299CrossRefPubMedGoogle Scholar
  17. Harith ZT, Ariff AB, Yusoff FM, Mohamed MS, Din MSM, Ariff AB (2009) Effect of different flocculants on the flocculation performance of microalgae, Chaetoceros calcitrans, cells. Afr J Biotech 8:5971–5978CrossRefGoogle Scholar
  18. Harun R, Singh M, Forde GM, Danquah MK (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sust Energ Rev 14:1037–1047CrossRefGoogle Scholar
  19. Heasman M, Diemar J, O’Connor W, Sushames T, Foulkes L (2000) Development of extended shelf-life microalgae concentrate diets harvested by centrifugation for bivalve molluscs—a summary. Aquac Res 31:637–659CrossRefGoogle Scholar
  20. Henderson RK, Parsons SA, Jefferson B (2010) The impact of differing cell and algogenic organic matter (AOM) characteristics on the coagulation and flotation of algae. Water Res 44:3617–3624CrossRefPubMedGoogle Scholar
  21. Independent Statistics & Analysis (EIA) (2016) Electric power monthly: with data for January 2016. WashingtonGoogle Scholar
  22. Ives KJ (1959) The significance of surface electric charge on algae in water purification. J Biochem Microbiol Technol Eng 1:37–47CrossRefGoogle Scholar
  23. Milledge JJ, Heaven S (2013) A review of the harvesting of micro-algae for biofuel production. Rev Environ Sci Biotechnol 12:165–178CrossRefGoogle Scholar
  24. Olguín EJ, Dorantes E, Castillo OS, Hernández-Landa VJ (2015) Anaerobic digestates from vinasse promote growth and lipid enrichment in Neochloris oleoabundans cultures. J Appl Phycol 27:1813–1822CrossRefGoogle Scholar
  25. Ovenden C, Xiao H (2002) Flocculation behaviour and mechanisms of cationic inorganic microparticle/polymer systems. Colloids Surfaces A 197:225–234Google Scholar
  26. Pahl S, Lee A, Kalaitzidis T, Ashman P, Sathe S, Lewis D (2013) Harvesting, thickening and dewatering microalgae biomass. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 165-185Google Scholar
  27. Pruvost J, Van Vooren G, Cogne G, Legrand J (2009) Investigation of biomass and lipids production with Neochloris oleoabundans in photobioreactor. Bioresour Technol 100:5988–5995CrossRefPubMedGoogle Scholar
  28. Renault F, Sancey B, Badot PM, Crini G (2009) Chitosan for coagulation/flocculation processes—an eco-friendly approach. Eur Polym J 45:1337–1348CrossRefGoogle Scholar
  29. Richmond A, Becker EW (1986) Technological aspects of mass cultivation—a general outline. In: Richmond A, Hu Q (eds) Handbook of microalgal mass culture, 2nd edn. CRC Press, Boca Raton, pp 245–263Google Scholar
  30. Roselet F, Vandamme D, Roselet M, Muyalert K, Abreu PC (2015) Screening of commercial natural and synthetic cationic polymers for flocculation of freshwater and marine microalgae and effects of molecular weight and charge density. Algal Res 10:183–188CrossRefGoogle Scholar
  31. Salim S, Vermuë MH, Wijffels RH (2012) Ratio between autoflocculating and target microalgae affects the energy-efficient harvesting by bio-flocculation. Bioresour Technol 118:49–55CrossRefPubMedGoogle Scholar
  32. Santos a M, Janssen M, Lamers PP, Evers WA, Wijffels RH (2012) Growth of oil accumulating microalga Neochloris oleoabundans under alkaline-saline conditions. Bioresour Technol 104:593–599CrossRefPubMedGoogle Scholar
  33. Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. BioEnergy Res 1:20–43CrossRefGoogle Scholar
  34. Schlesinger A, Eisenstadt D, Bar-Gil A, Carmely H, Einbinder S, Gressel J (2012) Inexpensive non-toxic flocculation of microalgae contradicts theories; overcoming a major hurdle to bulk algal production. Biotechnol Adv 30:1023–1030CrossRefPubMedGoogle Scholar
  35. Schwarz S, Jaeger W, Paulke BR, Bratskaya S, Smolka N, Bohrisch J (2007) Cationic flocculants carrying hydrophobic functionalities: applications for solid/liquid separation. J Phys Chem B 111:8649–8654CrossRefPubMedGoogle Scholar
  36. Scottish Marine Institute (2016) BG11 (Blue-Green medium). In: CCAP (Culture Collect. Algae Protozoa). Accessed 1 Jun 2015
  37. Singh RP, Tripathy T, Karmakar GP, Rath SK, Karmakar NC, Pandey SR, Kannan K, Jain SK, Lan NT (2000) Novel biodegradable flocculants based on polysaccharides. Curr Sci 78:798–803Google Scholar
  38. T´Lam GP, Giraldo JB, Vermuë MH, Olivieri G, Eppink MH, Wijffels RH (2016) Understanding the salinity effect on cationic polymers in inducing flocculation of the microalga Neochloris oleoabundans. J Biotechnol 225:10–17CrossRefGoogle Scholar
  39. T´Lam GP, Zegeye EK, Vermuë MH, Kleinegris DM, Eppink MH, Wijffels RH, Olivieri G (2015) Dosage effect of cationic polymers on the flocculation efficiency of the marine microalga Neochloris oleoabundans. Bioresour Technol 198:797–802CrossRefGoogle Scholar
  40. T´ Lam GP, Vermuë MH, Olivieri G, van den Broek LAM, Barbosa MJ, Eppink MHM, Wijffels RH, Kleinegris DMM (2014) Cationic polymers for successful flocculation of marine microalgae. Bioresour Technol 169:804–807CrossRefGoogle Scholar
  41. Tenney MW, Stumm W, Mark W (1965) Chemical flocculation of microorganisms in biological waste treatment. Water Environ Fed 37:1370–1388Google Scholar
  42. Tenney MW, Verhoff FH (1973) Chemical and autoflocculation of microorganisms in biological wastewater treatment. Biotechnol Bioeng 15:1045–1073CrossRefPubMedGoogle Scholar
  43. Tredici MR (2010) Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels 1:143–162CrossRefGoogle Scholar
  44. Vandamme D, Beuckels A, Markou G, Foubert I, Muylaert K (2015) Reversible flocculation of microalgae using magnesium hydroxide. BioEnergy Res 8:716–725CrossRefGoogle Scholar
  45. Vandamme D, Foubert I, Meesschaert B, Muylaert K (2010) Flocculation of microalgae using cationic starch. J Appl Phycol 22:525–530CrossRefGoogle Scholar
  46. Wan C, Alam MA, Zhao X-Q, Zhang X-Y, Guo S-L, Ho S-H, Chang J-S, Bai F-W (2014) Current progress and future prospect of microalgal biomass harvest using various flocculation technologies. Bioresour Technol 184:251–257CrossRefPubMedGoogle Scholar
  47. Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329:796–799CrossRefPubMedGoogle Scholar
  48. Wu S, Xie X, Huan L, Zheng Z, Zhao P, Kuang J, Liu X, Wang G (2016) Selection of optimal flocculant for effective harvesting of the fucoxanthin-rich marine microalga Isochrysis galbana. J Appl Phycol 28:1579–1588CrossRefGoogle Scholar
  49. Wu Z, Zhu Y, Huang W, Zhang C, Li T, Zhang Y, Li A (2012) Evaluation of flocculation induced by pH increase for harvesting microalgae and reuse of flocculated medium. Bioresour Technol 110:496–502.1CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • P. C. S. Kirnev
    • 1
  • J. C. de Carvalho
    • 1
    Email author
  • J. T. Miyaoka
    • 1
  • L. C. Cartas
    • 1
  • L. P. S. Vandenberghe
    • 1
  • C. R. Soccol
    • 1
  1. 1.Bioprocess Engineering and Biotechnology DepartmentFederal University of Paraná (UFPR)CuritibaBrazil

Personalised recommendations