Skip to main content
Log in

Effects of different initial pH and irradiance levels on cyanobacterial colonies from Lake Taihu, China

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Cyanobacteria usually appear in colonies on the surface of lakes, but the microenvironment inside colonies is not as easily detected. An accurate analysis of microenvironment properties within the colonies is key to a better understanding of the formation mechanism of cyanobacterial blooms. To understand the influence of irradiance and pH on the characteristics of cyanobacterial colonies from Lake Taihu, dissolved oxygen (DO) and pH microelectrodes were used to investigate physiological responses within these colonies and in the motionless water blooms at different irradiances and initial pH levels. The results showed that DO and pH increase with increasing irradiance, causing a dynamic alkaline environment to form inside these colonies. The maximum pH varies from 9 to 9.5 at all initial pH readings and the highest DO was achieved in the colonies incubated at an initial pH of 9. The maximum net photosynthesis (Pn) and dark respiratory rate (Rdark) were achieved in the colonies incubated at an initial pH of 8 and 6, respectively. The maximum pH differences were lower in colonies incubated at an initial pH of 10 compared with those incubated at a pH of 6 to 9. Photosynthesis of the colonies raised the aqueous pH to about 10.5, which is similar to the value found inside the colonies. In the motionless water bloom layer, the maximum pH varies from 10 to 10.5 at all initial pH levels and both the highest DO and pH values were achieved at an initial pH of 10. Cyanobacterial photosynthesis first created an alkaline microenvironment in the colonies and then increased the aqueous pH. This elevated aqueous pH promotes photosynthesis of the colonies and further increases the aqueous pH until it is higher than 10. Abundant oxygen bubbles attached at the colonies surface provide extra buoyancy for the colonies. An anaerobic environment forms at 3 to 4 cm depth under the bloom surface, aggravating the outbreak of cyanobacterial bloom. All these physiological characters of microenvironment in cyanobacterial colonies and water blooms favor cyanobacteria as the dominant water bloom species in eutrophic water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bano A, Siddiqui PJA (2004) Characterization of five marine cyanobacterial species with respect to their pH and salinity requirements. Pak J Bot 36:133–143

    Google Scholar 

  • Baroli I, Melis A (1998) Photoinhibitory damage is modulated by the rate of photosynthesis and by the photosystem II light-harvesting chlorophyll antenna size. Planta 205:288–296

    Article  PubMed  CAS  Google Scholar 

  • Beardall J, Raven JA (2016) Carbon acquisition by microalgae. In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Dordrecht, pp 89–90

    Chapter  Google Scholar 

  • Bowling LC, Baker PD (1996) Major cyanobacterial bloom in the Barwon-Darling River, Australia, in 1991, and underlying limnological conditions. Mar Freshw Res 47:643–657

    Article  CAS  Google Scholar 

  • Brock TD (1985) Life at high temperatures. Science 230:132–138

    Article  PubMed  CAS  Google Scholar 

  • Broecker WS, Peng TH (1974) Gas exchange rates between air and sea. Tellus 26:21–34

    Article  CAS  Google Scholar 

  • Cabiscol E, Tamarit J, Ros J (2000) Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol 3:3–8

    PubMed  CAS  Google Scholar 

  • Cai Y, Kong F (2013) Diversity and dynamics of picocyanobacteria and the bloom-forming cyanobacteria in a large shallow eutrophic lake (lake Chaohu, China). J Limnol 72:473–484

    Article  Google Scholar 

  • Caraco NF, Miller R (1998) Effects of CO2 on competition between a cyanobacterium and eukaryotic phytoplankton. Can J Fish Aquat Sci 55:54–62

    Article  Google Scholar 

  • Chan F, Pace ML, Howarth RW, Marino R (2004) Bloom formation in heterocystic nitrogen-fixing cyanobacteria: the dependence on colony size and zooplankton grazing. Limnol Oceanogr 49:2171–2178

    Article  Google Scholar 

  • Chen YP, Liu SHY, Fang F, Li SHH, Liu G, Tian YCH, Xiong Y, Yu HQ (2008) Simultaneous determination of nitrate and dissolved oxygen under neutral conditions using a novel silver-deposited gold microelectrode. Environ Sci Technol 42:8465–8470

    Article  PubMed  CAS  Google Scholar 

  • Chiu ZC, Chen MY, Lee DJ, Wang CH, Lai JY (2007) Oxygen diffusion in active layer of aerobic granule with step change in surrounding oxygen levels. Water Res 41:884–892

    Article  PubMed  CAS  Google Scholar 

  • Deacon C, Walsby AE (1990) Gas vesicle formation in the dark, and in light of different irradiances, by the cyanobacterium Microcystis sp. Brit Phycol J 25:133–139

    Article  Google Scholar 

  • Deng JM, Qin BQ, Paerl HW, Zhang YL, Ma JR, Chen YW (2014a) Earlier and warmer springs increase cyanobacterial (Microcystis spp.) blooms in subtropical Lake Taihu, China. Freshw Biol 59:1076–1085

    Article  Google Scholar 

  • Deng J, Qin B, Paerl HW, Zhang Y, Wu P, Ma J, Chen Y (2014b) Effects of nutrients, temperature and their interactions on spring phytoplankton community succession in Lake Taihu, China. PLoS One 9:113960

    Article  CAS  Google Scholar 

  • Dokulil MT, Teubner K (2000) Cyanobacterial dominance in lakes. Hydrobiologia 438:1–12

    Article  CAS  Google Scholar 

  • Epping EHG, Khalili A, Thar R (1999) Photosynthesis and the dynamics of oxygen consumption in a microbial mat as calculated from transient oxygen microprofiles. Limnol Oceanogr 44:1936–1948

    Article  Google Scholar 

  • Fabbro LD, Duivenvoorden LJ (1996) Profile of a bloom of the cyanobacterium Cylindrospermopsis raciborskii (Woloszynska) Seenaya and Subba Raju in the Fitzroy River in tropical central Queensland. Mar Freshw Res 47:685–694

    Article  CAS  Google Scholar 

  • Fang F, Yang LY, Gan L, Hu ZX, Chen QK, Jiang LJ (2014) DO, pH, and Eh microprofiles in cyanobacterial granules from Lake Taihu under different environmental conditions. J Appl Phycol 26:1689–1699

    Article  CAS  Google Scholar 

  • Fu K, Moe B, Li X, Le XC (2015) Cyanobacterial bloom dynamics in Lake Taihu. J Environ Sci 32:249–251

    Article  Google Scholar 

  • Gavis J, Ferguson JF (1975) Kinetics of carbon dioxide uptake by phytoplankton at high pH. Limnol Oceanogr 20:211–221

    Article  CAS  Google Scholar 

  • Glibert PM, Heil CA, Hollander DJ, Revilla M, Hoare A, Alexander J, Murasko S (2004) Evidence for dissolved organic nitrogen and phosphorus uptake during a cyanobacterial bloom in Florida Bay. Mar Ecol Prog Ser 280:73–83

    Article  Google Scholar 

  • Hancke K, Glud RN (2004) Temperature effects on respiration and photosynthesis in three diatom-dominated benthic communities. Aquat Microb Ecol 37:265–281

    Article  Google Scholar 

  • Ha K, Kim HW, Joo GJ (1998) The phytoplankton succession in the lower part of hypertrophic Nakdong River (Mulgum), South Korea. Hydrobiologia 369:217–227

    Article  Google Scholar 

  • Han C, Yao L, Xu D, Xie X, Zhang C (2016) High-resolution imaging of pH in alkaline sediments and water based on a new rapid response fluorescent planar optode. Sci Rep 6:26417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hansen PJ (2002) Effect of high pH on the growth and survival of marine phytoplankton: implications for species succession. Aquat Microb Ecol 28:279–288

    Article  Google Scholar 

  • Hinners J, Hofmeister R, Hense I (2015) Modeling the role of pH on Baltic Sea cyanobacteria. Life 5:1204–1217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang YL, Chen MX (2013) Variation of dissolved oxygen in the experiments of occurrence & disappearance for Microcystis bloom. Procedia Environ Sci 18:559–566

    Article  CAS  Google Scholar 

  • Huertas E, Montero O, Lubián LM (2000) Effects of dissolved inorganic carbon availability on growth, nutrient uptake and chlorophyll fluorescence of two species of marine microalgae. Aquac Eng 22:181–197

    Article  Google Scholar 

  • Ibelings BW (1996) Changes in photosynthesis in response to combined irradiance and temperature stress in cyanobacterial surface waterblooms. J Phycol 32:549–557

    Article  Google Scholar 

  • Ibelings BW, Maberly SC (1998) Photoinhibition and the availability of inorganic carbon restrict photosynthesis by surface blooms of cyanobacteria. Limnol Oceanogr 43:408–419

    Article  CAS  Google Scholar 

  • Jensen JP, Jeppesen E, Olrik K, Kristensen P (1994) Impact of nutrients and physical factors on the shift from cyanobacterial to chlorophyte dominance in shallow Danish lakes. Can J Fish Aquat Sci 51:1692–1699

    Article  Google Scholar 

  • Jones IL, Livi P, Lewandowska MK, Fiscella M, Roscic B, Hierlemann A (2011) The potential of microelectrode arrays and microelectronics for biomedical research and diagnostics. Anal Bioanal Chem 399:2313–2329

    Article  PubMed  CAS  Google Scholar 

  • Jørgensen BB, Revsbech NP, Cohen Y (1985) Symbiotic photosynthesis in a planktonic foraminiferan, Globigerinoides sacculifer (Brady), studied with microelectrodes. Limnol Oceanogr 30:1253–1267

    Article  Google Scholar 

  • Kaji H, Tsukidate K, Matsue T, Nishizawa M (2004) In situ control of cellular growth and migration on substrates using microelectrodes. J Am Chem Soc 126:15026–15027

    Article  PubMed  CAS  Google Scholar 

  • Kallas T, Castenholz RW (1982) Rapid transient growth at low pH in the cyanobacterium Synechococcus sp. J Bacteriol 149:237–246

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kanoshina I, Lips U, Leppänen JM (2003) The influence of weather conditions (temperature and wind) on cyanobacterial bloom development in the Gulf of Finland (Baltic Sea). Harmful Algae 2:29–41

    Article  Google Scholar 

  • Keithellakpam OS, Nath TO, Oinam AS, Thingujam I, Oinam G, Dutt SG (2015) Effect of external pH on cyanobacterial phycobiliproteins production and ammonium excretion. J Appl Biol Biotechnol 3:38–42

    CAS  Google Scholar 

  • King L (1970) The role of carbon in eutrophication. J Wat Pollut Control Fed 42:2035–2051

    CAS  Google Scholar 

  • Kong FX, Ma RH, Gao JF, Wu XD (2009) The theory and practice of prevention, forecast and warning on cyanobacteria bloom in Lake Taihu. J Lake Sci 21:314–328

    Article  CAS  Google Scholar 

  • Kühl M, Glud RN, Ploug H, Ramsing NB (1996) Microenvironmental control of photosynthesis and photosynthesis-coupled respiration in an epilithic cyanobacterial biofilm. J Phycol 32:799–812

    Article  Google Scholar 

  • Lassen C, Glud RN, Ramsing NB, Revsbech NP (1998) A method to improve the spatial resolution of photosynthetic rates obtained by oxygen microsensors. J Phycol 34:89–93

    Article  Google Scholar 

  • Leavitt PR, Findlay DL, Hall RI, Smol JP (1999) Algal responses to dissolved organic carbon loss and pH decline during whole-lake acidification: evidence from paleolimnology. Limnol Oceanogr 44:757–773

    Article  CAS  Google Scholar 

  • Li W, Qin B, Zhu G (2014) Forecasting short-term cyanobacterial blooms in Lake Taihu, China, using a coupled hydrodynamic–algal biomass model. Ecohydrology 7:794–802

    Article  CAS  Google Scholar 

  • Li P, Liu W, Gao K (2013) Effects of temperature, pH, and UV radiation on alkaline phosphatase activity in the terrestrial cyanobacterium Nostoc flagelliforme. J Appl Phycol 25:1031–1038

    Article  CAS  Google Scholar 

  • Lu H, Jin Y, Tian Y, Zhang W, Holl MR, Meldrum DR (2011) New ratiometric optical oxygen and pH dual sensors with three emission colors for measuring photosynthetic activity in cyanobacteria. J Mater Chem 21:19293–19301

    Article  CAS  Google Scholar 

  • Macedo MF, Duarte P, Mendes P, Ferreira JG (2001) Annual variation of environmental variables, phytoplankton species composition and photosynthetic parameters in a coastal lagoon. J Plankton Res 23:719–732

    Article  CAS  Google Scholar 

  • Ma JR, Brookes JD, Qin B, Paerl HW, Gao G, Wu P, Zhang W, Deng JM, Zhu GW, Zhang YL, Xu H, Niu H (2014) Environmental factors controlling colony formation in blooms of the cyanobacteria Microcystis spp. in Lake Taihu, China. Harmful Algae 31:136–142

    Article  PubMed  CAS  Google Scholar 

  • McCarthy MJ, Lavrentyev PJ, Yang L, Zhang L, Chen Y, Qin B, Gardner WS (2007) Nitrogen dynamics and microbial food web structure during a summer cyanobacterial bloom in a subtropical, shallow, well-mixed, eutrophic lake (lake Taihu, China). Hydrobiologia 581:195–207

    Article  CAS  Google Scholar 

  • Menéndez M, Comin FA (2001) A comparative study of the effect of pH and inorganic carbon resources on the photosynthesis of three floating macroalgae species of a Mediterranean coastal lagoon. J Exp Mar Biol Ecol 256:123–136

    Article  PubMed  Google Scholar 

  • Miller SR, Wingard CE, Castenholz RW (1998) Effects of visible light and UV radiation on photosynthesis in a population of a hot spring cyanobacterium, a Synechococcus sp., subjected to high temperature stress. Appl Environ Microbiol 64:3893–3899

    PubMed  PubMed Central  CAS  Google Scholar 

  • Moy BYP, Tay JH, Toh SK, Liu Y, Tay SL (2002) High organic loading influences the physical characteristics of aerobic sludge granules. Lett Appl Microbiol 34:407–412

    Article  PubMed  Google Scholar 

  • Mur LR, Skulberg OM, Utkilen H, Bartram J, Chorus I (1999) Cyanobacteria in the environment. Toxic cyanobacteria in water. In: A guide to their public health consequences, monitoring and management. Aquatic Sciences, Biochim Biophys Acta, pp 15-40

  • Nakamura Y, Satoh H, Okabe S, Watanabe Y (2004) Photosynthesis in sediments determined at high spatial resolution by the use of microelectrodes. Water Res 38: 2440–2448

  • Qin BQ, Zhu GW, Gao G, Zhang YL, Li W, Paerl HW, Carmichael WW (2010) A drinking water crisis in Lake Taihu, China: linkage to climatic variability and lake management. Environ Manag 45:105–112

    Article  Google Scholar 

  • Shi X, Zhao X, Zhang M, Yang Z, Xu P, Kong F (2016) The responses of phytoplankton communities to elevated CO show seasonal variations in the highly eutrophic Lake Taihu. Can J Fish Aquat 2 Sci 73:727–736

    Article  CAS  Google Scholar 

  • Sorichetti RJ, Creed IF, Trick CG (2014) Evidence for iron-regulated cyanobacterial predominance in oligotrophic lakes. Freshw Biol 59:679–691

    Article  CAS  Google Scholar 

  • Srivastava A, Singh S, Ahn C, Oh H, Asthana RK (2013) Monitoring approaches for a toxic cyanobacterial bloom. Environ Sci Technol 47:8999–9013

    Article  PubMed  CAS  Google Scholar 

  • Tillett D, Dittmann E, Erhard M, von Döhren H, Börner T, Neilan BA (2000) Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide–polyketide synthetase system. Chem Biol 7:753–764

    Article  PubMed  CAS  Google Scholar 

  • Oinam AS, Tiwari ON, Chungkham S, Thingujam I, Keithellakpam OS, Oinam G, Sharma GD (2015) High nitrate, phosphate and alkaline pH enhances total carotenoids yield in Leptolyngbya SP. BTA 287. Int J Adv Biotech Res 6:211–219

    CAS  Google Scholar 

  • Oliver RL, Ganf GG (2002) Freshwater blooms. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer Academic, Dordrecht, pp 149–194

    Chapter  Google Scholar 

  • Paerl HW, Ustach JF (1982) Blue-green algal scums: an explanation for their occurrence during freshwater blooms. Limnol Oceanogr 27:212–217

    Article  CAS  Google Scholar 

  • Paerl HW (1983) Partitioning of CO2 fixation in the colonial cyanobacterium Microcystis aeruginosa: mechanism promoting formation of surface scums. Appl Environ Microbiol 46:252–259

  • Paerl HW (1996) Comparison of cyanobacterial bloom dynamics in freshwater, estuarine and marine environments. Phycologia 35:25–35

    Article  Google Scholar 

  • Paerl HW, Fulton RS, Moisander PH, Dyble J (2001a) Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Sci World J 1:76–113

    Article  CAS  Google Scholar 

  • Paerl HW, Dyble J, Moisander PH, Noble RT, Piehler MF, Pinckney JL, Valdes LM (2003) Microbial indicators of aquatic ecosystem change: current applications to eutrophication studies. FEMS Microbiol Ecol 46:233–246

    Article  PubMed  CAS  Google Scholar 

  • Paerl HW, Fulton RS, Moisander PH, Dyble J (2001b) Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Sci World J 1:76–113

    Article  CAS  Google Scholar 

  • Paerl HW, Huisman J (2008) Blooms like it hot. Science 320:57–58

    Article  PubMed  CAS  Google Scholar 

  • Pedersen MF, Hansen PJ (2003b) Effects of high pH on a natural marine planktonic community. Mar Ecol Prog Ser 260:19–31

    Article  CAS  Google Scholar 

  • Ploug H (2008) Cyanobacterial surface blooms formed by Aphanizomenon sp. and Nodularia spumigena in the Baltic Sea: small-scale fluxes, pH, and oxygen microenvironments. Limnol Oceanogr 53:914–921

    Article  CAS  Google Scholar 

  • Paerl HW, Otten TG (2013) Harmful cyanobacterial blooms: causes, consequences, and controls. Microb Ecol 65:995–1010

    Article  PubMed  CAS  Google Scholar 

  • Qin B, Li W, Zhu G, Zhang Y, Wu T, Gao G (2015) Cyanobacterial bloom management through integrated monitoring and forecasting in large shallow eutrophic Lake Taihu (China). J Hazard Mater 287:356–363

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen H, Jørgensen BB (1992) Microelectrode studies of seasonal oxygen uptake in a coastal sediment: role of molecular diffusion. Mar Ecol Prog Ser 81:289–303

    Article  CAS  Google Scholar 

  • Riding R (2006) Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic–Cambrian changes in atmospheric composition. Geobiology 4:299–316

    Article  CAS  Google Scholar 

  • Reynolds CS, Oliver RL, Walsby AE (1987) Cyanobacterial dominance: the role of buoyancy regulation in dynamic lake environments. N Z J. Mar Freshwat Res 21:379–390

    Article  Google Scholar 

  • Revsbech NP, Jørgensen BB, Blackburn TH (1983) Microelectrode studies of the photosynthesis and O2, H2S, and pH profiles of a microbial mat. Limnol Oceanogr 28:1062–1074

    Article  Google Scholar 

  • Shapiro J (1990) Current beliefs regarding dominance by blue-greens: the case for the importance of CO2 and pH. Verh Int Verein Limnol 24:38–54

    Google Scholar 

  • Shapiro J (1997) The role of carbon dioxide in the initiation and maintenance of blue-green dominance in lakes. Freshw Biol 37:307–323

    Article  Google Scholar 

  • Shruthi MS, Rajashekhar M (2014) Effect of salinity and pH on the growth and biomass production in the four species of estuarine cyanobacteria. J Algal Biomass Utln 5:29–36

    Google Scholar 

  • Smith RE, Kalff J (1982) Size-dependent phosphorus uptake kinetics and cell quota in phytoplankton. J Phycol 18:275–284

    Article  CAS  Google Scholar 

  • Smith VH (2003) Eutrophication of freshwater and coastal marine ecosystems a global problem. Environ Sci Pollut Res 10:126–139

    Article  CAS  Google Scholar 

  • Song LR, Chen W, Peng L, Wan N, Gan NQ, Zhang XM (2007) Distribution and bioaccumulation of microcystins in water columns: a systematic investigation into the environmental fate and the risks associated with microcystins in Meiliang Bay, Lake Taihu. Water Res 41:2853–2864

    Article  PubMed  CAS  Google Scholar 

  • Steinberg CEW, Hartmann HM (1988) Planktonic bloom-forming cyanobacteria and the eutrophication of lakes and rivers. Freshw Biol 20:279–287

    Article  Google Scholar 

  • Taraldsvik M, Myklestad SM (2000) The effect of pH on growth rate, biochemical composition and extracellular carbohydrate production of the marine diatom Skeletonema costatum. Eur J Phycol 35:189–194

    Article  Google Scholar 

  • Van der Westhuizen AJ, Eloff JN (1983) Effect of culture age and pH of culture medium on the growth and toxicity of the blue-green alga Microcystis aeruginosa. Z Pflanzenphysiol 110:157–163

    Article  Google Scholar 

  • von Sperling E, da Silva Ferreira AC, Gomes LNL (2008) Comparative eutrophication development in two Brazilian water supply reservoirs with respect to nutrient concentrations and bacteria growth. Desalination 226:169–174

    Article  CAS  Google Scholar 

  • Wang X, Qin B, Gao G, Paerl HW (2010) Nutrient enrichment and selective predation by zooplankton promote Microcystis (cyanobacteria) bloom formation. J Plankton Res 32:457–470

    Article  CAS  Google Scholar 

  • Warhurst BC (2014) Effects of elevated salinity and oxidative stress on the physiology of the toxigenic cyanobacterium Microcystis aeruginosa. Master’s Thesis, University of North Florida, USA 49 pp

  • Wilson A, Kinney JN, Zwart PH, Punginelli C, D'Haene S, Perreau F, Kerfeld CA (2010) Structural determinants underlying photoprotection in the photoactive orange carotenoid protein of cyanobacteria. J Biol Chem 285:18364–18375

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu T, Qin B, Brookes JD, Shi K, Zhu G, Zhu M, Wang Z (2015) The influence of changes in wind patterns on the areal extension of surface cyanobacterial blooms in a large shallow lake in China. Sci Total Environ 518:24–30

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Paerl HW, Qin B, Zhu G, Hall NS, Wu YP (2015) Determining critical nutrient thresholds needed to control harmful cyanobacterial blooms in eutrophic Lake Taihu, China. Environ Sci Technol 49:1051–1059

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Paer HW, Qin B, Zhu G, Gao G (2010) Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China. Limnol Oceanogr 55:420–432

    Article  CAS  Google Scholar 

  • Yamamoto Y, Shiah FK, Chen YL (2011) Importance of large colony formation in bloom-forming cyanobacteria to dominate in eutrophic ponds. Int J Limnol 47:167–173

    Article  Google Scholar 

  • Yang Z, Kong F, Shi X, Zhang M, Xing P, Cao H (2008) Changes in the morphology and polysaccharide content of Microcystis aeruginosa (cyanobacteria) during flagellate grazing. J Phycol 44:716–720

    Article  PubMed  Google Scholar 

  • Yuan LN, Song W, Xiao L, Jiang LJ, Yang LY (2008) The overall orthogonal design study of multifactor interaction on the growth of Microcystis aeruginosa in the presence of adnascent Pseudomonas sp. J Nanjing Univ 44:408–414

    CAS  Google Scholar 

  • Yu Q, Chen Y, Liu Z, De Giesen NV, Zhu D (2015) The influence of a eutrophic lake to the river downstream: spatiotemporal algal composition changes and the driving factors. Water 7:2184–2201

    Article  CAS  Google Scholar 

  • Zhang LF, Yang HM, Cui SX, Hu J, Wang J, Kuang TY, Norling B, Huang F (2009) Proteomic analysis of plasma membranes of cyanobacterium Synechocystis sp. strain PCC 6803 in response to high pH stress. J Proteome Res 8:2892–2902

    Article  PubMed  CAS  Google Scholar 

  • Zhang YC, Qian X, Qian Y, Lu GF, Tadaharu I (2008) Field measurement and analysis on diurnal stratification in Taihu Lake. Environ Sci Manage 6:117–121

    Google Scholar 

  • Zhang YSH, Li HY, Kong FX, Yu Y, Zhang M (2011) Role of colony intercellular space in the cyanobacterial bloom-forming. Environ Sci 32:1602–1607

    Google Scholar 

Download references

Acknowledgments

This work has been supported by grants from the National Special Program of Water Environment (2017ZX07204) and National Basic Research Program of China (2008CB418102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liuyan Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, F., Gao, Y., Gan, L. et al. Effects of different initial pH and irradiance levels on cyanobacterial colonies from Lake Taihu, China. J Appl Phycol 30, 1777–1793 (2018). https://doi.org/10.1007/s10811-018-1394-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-018-1394-5

Keywords

Navigation