Skip to main content
Log in

Characterisation of Pseudanabaena amphigranulata (Synechococcales) isolated from a man-made pond, Malaysia: a polyphasic approach

Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

A filamentous benthic cyanobacteria strain isolated from a tropical man-made pond in Malaysia was characterised using combined phenotypic and genetic approaches. Morphological and ultrastructural observations were performed together with growth measurements. Cell dimensions, thylakoid arrangement and apical cell shape with aerotopes were consistent with the description of Pseudanabaena amphigranulata (Goor) Anagnostidis. Molecular characterisation of the16S rRNA gene gave 94% pairwise sequence identity with Pseudanabaena sp. PCC 6802,which corresponds to the genus identification threshold value while also suggesting that the strain is distinctly different to the species of Pseudanabaena currently represented in available databases. The strain showed identical 16S-23S ITS configuration with other strains of Pseudanabaena apart from having a larger spacer region. Cultures of the strain were exposed to various temperature and photoperiod treatments and harvested at exponential phase in order to examine phenotypic plasticity. Significant relationships between environmental conditions and morphological characteristics (cell dimensions and shape) were identified for the first time within the genus Pseudanabaena. The maximum cell length (5.7 ± 0.07 μm) was observed at 25 °C under 12:12 light to dark, while the greatest cell width (3.2 ± 0.11 μm) was also observed at 25 °C but under 16:8 light to dark. The strain showed high plasticity in cell dimensions and shape under different temperature and photoperiod treatments, with25 °C under 12:12 light to dark providing the optimal conditions for its growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Acinas SG, Haverkamp TA, Huisman J, Stal LJ (2009) Phenotypic and genetic diversification of Pseudanabaena spp. (cyanobacteria). ISME J 3(1):31–46

    Article  CAS  Google Scholar 

  • Anagnostidis K (2001) Nomenclatural changes in cyanoprokaryotic order Oscillatoriales. Preslia 73:359–375

    Google Scholar 

  • Andersen RA, Kawachi M (2005) Traditional microalgae isolation techniques. In: Anderson RA (ed) Algal culturing techniques. Elsevier, Amsterdam, pp 83-100.

    Google Scholar 

  • Bertos-Fortis M, Farnelid HM, Lindh MV, Casini M, Andersson A, Pinhassi J, Legrand C (2016) Unscrambling cyanobacteria community dynamics related to environmental factors. Front Microbiol 7:625

    Article  Google Scholar 

  • Boyer SL, Flechtner VR, Johansen JR (2001) Is the 16S-23S rRNA internal transcribed spacer region a good tool for use in molecular systematics and population genetics? A case study in cyanobacteria. Mol Biol Evol 18:1057–1069

    Article  CAS  Google Scholar 

  • Bruno L, Billi D, Bellezza S, Albertano P (2009) Cytomorphological and genetic characterization of troglobitic Leptolyngbya strains isolated from Roman hypogea. Appl Environ Microbiol 75:608–617

    Article  CAS  Google Scholar 

  • Castenholz R W (2001) Phylum BX. Cyanobacteria. Oxygenic photosynthetic bacteria. In: Bergey’s manual of systematic bacteriology. Volume 1: the Archaea and the deeply branching and phototropic Bacteria. Springer, New York, pp. 413-439

  • Chen J, Banks D, Jarret RL, Jones JB (2000) Evidence for conserved tRNA genes in the 16S-23S rDNA spacer sequence and two rrn operons of Xylella fastidiosa. Can J Microbiol 46:1171–1175

    Article  CAS  Google Scholar 

  • Comte K, Sabacka M, Carre-Mlouka A, Elster J, Komárek J (2007) Relationships between the Arctic and the Antarctic cyanobacteria; three Phormidium–like strains evaluated by a polyphasic approach. FEMS Microbiol Ecol 59:366–376

    Article  CAS  Google Scholar 

  • Dehning I, Tilzer M (1989) Survival of Scenedesmus acuminatus (Chlorophyceae) in darkness. J Phycol 25:509–515

    Article  Google Scholar 

  • Emerson D, Agulto L, Liu H, Liu L (2008) Identifying and characterizing bacteria in an era of genomics and proteomics. Bioscience 58:925–936

    Article  Google Scholar 

  • Geitler L (1932) Cyanophyceae In: Rabenhorst, L. (Ed.) Kryptogamen Flora von Deutschland, Österreich und der Schweiz 14. Akademische Verlagsgesellschaft, Leipzig, pp. 130–159

  • van Goor ACJ (1918) Zur Kenntnis der Oscillatoriaceen. Reçueil des Travaux Botaniques Néerlandais 15:255–262

    Google Scholar 

  • Graumann P, Marahiel MA (1996) Some like it cold: response of microorganisms to cold shock. Arch Microbiol 166:293–300

    Article  CAS  Google Scholar 

  • Gupta S, Agrawal SC (2006) Survival of blue-green and green algae under stress conditions. Folia Microbiol 51(2):121–128

    Article  CAS  Google Scholar 

  • Gugger M, Lyra C, Suominen I, Tsitko I, Humbert JF, Salkinoja-Salonen MS, Sivonen K (2002) Cellular fatty acids as chemotaxonomic markers of the genera Anabaena, Aphanizomenon, Microcystis, Nostoc and Planktothrix (cyanobacteria). Int J Syst Evol Microbiol 52:1007–1015

    CAS  PubMed  Google Scholar 

  • James F. Coles, R. Christian Jones, (2000) Effect of temperature on photosynthesis-light response and growth of four phytoplankton species isolated from a tidal freshwater river. J Phycol 36 :7-16

  • Kling H, Watson S (2003) A new planktic species of Pseudanabaena (Cyanoprokaryota, Oscillatoriales) from North American large lakes. Hydrobiologia 502:383–388

    Article  Google Scholar 

  • Komarek J (2003) Problem of the taxonomic category “species” in cyanobacteria. Algol Stud 109:281–297

    Article  Google Scholar 

  • Komárek J, Anagnostidis K (2005) Süsswasserflora von Mitteleuropa. Cyanoprokaryota: 2.Teil/2nd Part: Oscillatoriales. (Vol. 19): Elsevier Spektrum Akademischer Verlag, Munich, pp.86

  • Komarek J, Kastovsky J, Mares J, Johansen RJ (2014) Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia 86:295–335

    Google Scholar 

  • Lauterborn R (1915) Die sapropelische Lebewelt. Ein Beitragzur Biologie des Faulschlammesnatürlicher Gewässer. Verhs Naturhist Med Vereins Heidelberg. Neue Folge 13:395–481

    Google Scholar 

  • Lyra C, Suomalainen S, Gugger M, Vezie C, Sundman P, Paulin L, Sivonen K (2001) Molecular characterization of planktic cyanobacteria of Anabaena, Aphanizomenon, Microcystis and Planktothrixgenera. Int J Syst Evol Microbiol 51:513–526

    Article  CAS  Google Scholar 

  • Marquardt J, Palinska KA (2007) Genotypic and phenotypic diversity of cyanobacteria assigned to the genus Phormidium (Oscillatoriales) from different habitats and geographical sites. Arch Microbiol 187:397–413

    Article  CAS  Google Scholar 

  • Montagnes DS, Franklin DJ (2001) Effect of temperature on diatom volume, growth rate, and carbon and nitrogen content: reconsidering some paradigms. Limnol Oceanogr 46:2008–2018

    Article  CAS  Google Scholar 

  • Oufdou K, Mezrioui N, Oudra B, Loudiki M, Barakate M, Sbiyyaa B (2001) Bioactive compounds from Pseudanabaena species (cyanobacteria). Microbios 106(Suppl 1):21–29

    CAS  PubMed  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MRBAYES 3—Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  Google Scholar 

  • Salih S, Alkarkhi A, Lalung J, Ismail N (2013) Water quality of river, lake and drinking water supply in Penang State by means of multivariate analysis. World Appl Sci J 26:75–82

    CAS  Google Scholar 

  • Schwabe GH (1964) Grundprobleme der Cyanophytentaxonomie. Gewässer und Abwässer 36:7–39

    Google Scholar 

  • Sciuto K, Andreoli C, Rascio N, La Rocca N, Moro I (2012) Polyphasic approach and typification of selected Phormidium strains (cyanobacteria). Cladistics 28:357–374

    Article  Google Scholar 

  • Singh SP, Singh P (2015) Effect of temperature and light on the growth of algae species: a review. Renew Sust Energy Rev 50:431–444

    Article  CAS  Google Scholar 

  • Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155

    Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6, molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  Google Scholar 

  • Tyystjarvi E, Aro EM (1996) The rate constant of photoinhibition, measured in lincomycin-treated leaves, is directly proportional to light intensity. Plant Biol 93:2213–2218

    CAS  Google Scholar 

  • Whitton B A (2011) Cyanobacteria (Cyanophyta) In: John, D.M., Whitton, B.A. and Brook, A.J. (Eds.) The freshwater algal flora of the British Isles. An identification guide to freshwater and terrestrial algae. Cambridge University Press, Cambridge, pp. 31–158

  • Winder M, Sommer U (2012) Phytoplankton response to a changing climate. Hydrobiologia 698:5–16

    Article  Google Scholar 

  • Yu G, Zhu M, Chen Y, Pan Q, Chai W, Li R (2015) Polyphasic characterization of four species of Pseudanabaena (Oscillatoriales,Cyanobacteria) from China and insights into polyphyletic divergence within the Pseudanabaena genus. Phytotaxa 192:1–12

    Article  Google Scholar 

  • Zapomelova E, Hisem D, Rehakova K, Hrouzek P, Jezberova J, Komarkova J, Korelusova J, Znachor P (2008) Experimental comparison of phenotypic plasticity and growth (cyanobacteria). J Plankton Res 30:1257–1269

    Article  Google Scholar 

Download references

Acknowledgements

We thank Mohammed BasriEshak for assistance with statistical analysis.

Funding

This study was funded and supported by Flagship grant (304/PBIOLOGI/650723/P131) under Ministry of Science, Technology and Innovation, Malaysia. P. Convey is supported by NERC core funding to the BAS ‘Biodiversity, Evolution and Adaptation’ Team.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan Maznah Wan Omar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, Z., Wan Omar, W., Mohd Sidik Merican, F. et al. Characterisation of Pseudanabaena amphigranulata (Synechococcales) isolated from a man-made pond, Malaysia: a polyphasic approach. J Appl Phycol 30, 3187–3196 (2018). https://doi.org/10.1007/s10811-018-1392-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-018-1392-7

Keywords

Navigation