Skip to main content
Log in

The red microalga Flintiella sanguinaria as a new exopolysaccharide producer

  • 6th Congress of the International Society for Applied Phycology
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Flintiella sanguinaria is a red unicellular microalgae belonging to Porphyridiophyceae with a high potential as an exopolysaccharide producer. A new culture medium was developed by a stoichiometry approach based on elemental analysis of microalgae, and culture conditions were improved after measurements of photosynthetic activity as a function of irradiance, temperature and pH. These optimal conditions were thus validated in a photobioreactor for the production of biomass and exopolysaccharide (EPS). After extraction and purification of the EPS, it was characterised by HPAEC-PAD, HPLC and FT-IR as a methylated and acetylated galactoxylan including a significant amount of rhamnose and glucuronic acid in its structure. Macromolecular conformation in dilute solution of native, deproteinised and desubstituted EPS from F. sanguinaria revealed that this polysaccharide had a strong associative behaviour in which hydrophobic interactions or hydrogen bonding but also proteins were implicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • A.P.H.A (1971) Ultraviolets spectrometric method in standard methods for the examination of water and wastewater. American Public Health Association, Washington D.C., pp 237–239

    Google Scholar 

  • Adda M, Merchuk JC, Arad S (1986) Effect of nitrate on growth and production of cell-wall polysaccharide by the unicellular red alga Porphyridium. Biomass 10:131–140

    Article  CAS  Google Scholar 

  • Arad S, Adda M, Cohen E (1985) The potential of production of sulfated polysaccharides from Porphyridium. Plant Soil 89:117–127

    Article  CAS  Google Scholar 

  • Arad S, Friedman OD, Rotem A (1988) Effect of nitrogen on polysaccharide production in a Porphyridium sp. Appl Environm Microbiol 54:2411–2414

    CAS  Google Scholar 

  • Arad S, Lerental Y, Dubinsky O (1992) Effect of nitrate and sulfate starvation on polysaccharide formation in Rhodella reticulata. Bioresour Technol 42:141–148

    Article  CAS  Google Scholar 

  • Bischoff HW, Bold HC (1963) Phycological studies. IV. Some soil algae from Enchanted Rock and related algal species. University of Texas Publications 6318:1–95

  • Blumenkrantz N, Asboe-Hansen G (1973) New method for quantitative determination of uronic acids. Anal Biochem 54:484–489

    Article  CAS  Google Scholar 

  • Borowitzka MA (2013) High-value products from microalgae—their development and commercialization. J Appl Phycol 25:743–756

    Article  CAS  Google Scholar 

  • Bourrelly P (1970) Les algues d'eau douce. Initiation à la systématique. Tome III: Les Algues bleues et rouges. Les Eugléniens, Peridiniens et Cryptomonadines. Boubée & Cie (Eds), Paris, p 512

  • Capek P, Matulováa M, Combourieu B (2008). The extracellular proteoglycan produced by Rhodella grisea. Int J Biol Macromol 43: 390–393.

    Article  CAS  Google Scholar 

  • Casadevall E, Dif D, Largeau C, Gudin C, Chamount D, Desanti O (1985) Studies on batch and continuous culture of Botryococcus braunii: hydrocarbon production in relation to physiological state, cell ultrastructure and phosphate nutrition. Biotechnol Bioeng 27:286–295

    Article  CAS  Google Scholar 

  • Cawse PA (1967) The determination of nitrate in soil solutions by ultraviolet spectrometry. Analyst 62:311–315

    Article  Google Scholar 

  • Chen B, You W, Huang J, Yu Y, Chen W (2010) Isolation and antioxidant property of the extracellular polysaccharide from Rhodella reticulata. World J Microbiol Biotechnol 26:833–840

    Article  CAS  Google Scholar 

  • Chen YX, Liu XY, Xiao Z, Huang YF, Liu B (2016) Antioxidant activities of polysaccharides obtained from Chlorella pyrenoidosa via different ethanol concentrations. Int J Biol Macromol 91:505–509

    Article  CAS  Google Scholar 

  • Chew KW, Yap JY, Show PL, Suan NH, Juan JC, Ling TC, Lee D-J, Chang J-S (2017) Microalgae biorefinery: high value products perspectives. Bioresour Technol 229:53–62

    Article  CAS  Google Scholar 

  • Cornet J-F (2010) Calculation of optimal design and ideal productivities of volumetrically lightened photobioreactors using the constructal approach. Chem Engin Sci 65 (2): 985–998.

    Article  CAS  Google Scholar 

  • Cornet J-F, Dussap C-G (2009) A simple and reliable formula for assessment of maximum volumetric productivities in photobioreactors. Biotechnol Prog 25:424–435

    Article  CAS  Google Scholar 

  • Cornet J-F, Dussap C-G, Cluzel P, Dubertret G (1992) A structured model for simulation of cultures of the cyanobacterium Spirulina platensis in photobioreactors. I. Coupling between light transfer and growth kinetics. Biotechnol Bioeng 40:817–825

    Article  CAS  Google Scholar 

  • Cunningham FX, Dennenberg RJ, Mustardy L, Jursinic PA, Gantt E (1989) Stoichiometry of photosystem I, photosystem II, and phycobilisomes in the red alga Porphyridium cruentum as a function of growth irradiance. Plant Physiol 91:1179–1187

    Article  CAS  Google Scholar 

  • De Philippis R, Margheri MC, Materrasi R, Vincenzini M (1998) Potential of unicellular cyanobacteria from saline environments as exopolysaccharide producers. Appl Environ Microbiol 64:1130–1132

    PubMed  PubMed Central  Google Scholar 

  • Degrenne B, Pruvost J, Christophe G, Cornet J-F, Cogne G, Legrand J (2010) Investigation of the combined effects of acetate and photobioreactor illuminated fraction in the induction of anoxia for hydrogen production by Chlamydomonas reinhardtii. Int J Hydrog Energy 35:10741–10749

    Article  CAS  Google Scholar 

  • Delattre C, Pierre G, Laroche C, Michaud P (2016) Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnol Adv 34:1159–1179

    Article  CAS  Google Scholar 

  • Deng J, Shi J-J, Li X-Z, Liu H-M (2013) Soluble polysaccharides isolation and characterization from rabbiteye blueberry (Vaccinium ashei) fruits. Bioresources 8:405–419

    Article  Google Scholar 

  • Dermoun D, Chaumont D, Thebault J-M, Dauta A (1992) Modelling of growth of Porphyridium cruentum in connection with two interdependent factors: Light and temperature. Biores Technol 42 (2): 113–117.

    Article  Google Scholar 

  • Dodgson KS, Price RG (1962) A note on the determination of the ester sulphate content of sulphated polysaccharides. Biochem J 84:106–110

    Article  CAS  Google Scholar 

  • Eilers PHC, Peeters JCH (1988) A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecol Model 42:199–215

    Article  Google Scholar 

  • Fabregas J, Garcia D, Morales E, Dominguez A, Otero A (1998) Renewal rate of semicontinuous cultures of the microalga Porphyridium cruentum modifies phycoerythrin, exopolysaccharides and fatty acid productivity. J Ferment Bioeng 486:477–481

    Article  Google Scholar 

  • García-Gómez MJ, Huerta-Ochoa S, Loera-Corral O, Prado-Barragán LA (2009) Advantages of a proteolytic extract by Aspergillus oryzae from fish flour over a commercial proteolytic preparation. Food Chem 112:604–608

    Article  Google Scholar 

  • Geresh S, Lupescu N, Arad S (1992) Fractionation and partial characterization of the sulphated polysaccharide of Porphyridium. Phytochemistry 31:4181–4186

    Article  CAS  Google Scholar 

  • Geresh S, Mamontov A, Weinstein J (2002) Sulfation of extracellular polysaccharides of red microalgae: preparation, characterization and properties. J Biochem Biophys Meth 50:179–187

    Article  CAS  Google Scholar 

  • Geresh S, Arad SM, Levy-Ontman O, Zhang W, Tekoah Y, Glaser R (2009) Isolation and characterization of poly- and oligosaccharides from the red microalga Porphyridium sp. Carbohydr Res 344:343–349

    Article  CAS  Google Scholar 

  • Gómez-Ordóñez E, Rupérez P (2011) FTIR-ATR spectroscopy as a tool for polysaccharide identification in edible brown and red seaweeds. Food Hydrocoll 25:1514–1520

    Article  Google Scholar 

  • Guzmán S, Gato A, Lamela M, Freire-Garabal M, Calleja JM (2003) Anti-inflammatory and immunomodulatory activities of polysaccharide from Chlorella stigmatophora and Phaeodactylum tricornutum. Phytother Res 17:665–670

    Article  Google Scholar 

  • Heaney-Kieras J, Rodén L, Chapman DJ (1977) The covalent linkage of protein to carbohydrate in the extracellular protein-polysaccharide from the red alga Porphyridium cruentum. Biochem J 165:1–9

    Article  CAS  Google Scholar 

  • Hu C, Liu Y, Paulsen BS, Petersen D, Klaveness D (2003) Extracellular carbohydrate polymers from five desert soil algae with different cohesion in the stabilization of fine sand grain. Carbohyd Polym 54:33–42

    Article  CAS  Google Scholar 

  • Iqbal M, Zafar SI (1993) Effects of photon flux density, CO2, aeration rate, and inoculum density on growth and extracellular polysaccharide production by Porphyridium cruentum. Folia Microbiol 38 (6):509–514.

    Article  Google Scholar 

  • Kačuráková M, Capek P, Sasinkova V, Wellner N, Ebringerova A (2000) FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohyd Pol 43:195–203

    Article  Google Scholar 

  • Levigne S, Thomas M, Ralet M-C, Quemener B, Thibault J-F (2002) Determination of the degrees of methylation and acetylation of pectins using a C18 column and internal standards. Food Hydrocoll 16:547–550

    Article  CAS  Google Scholar 

  • Levy I, Gantt E (1988) Light acclimatation in Porphyridium purpureum (Rhodophyta): growth, photosynthesis and phycobilisomes. J Phycol 24:452–458

    Google Scholar 

  • Levy-Ontman O, Arad SM, Harvey DJ, Parsons TB, Fairbanks A, Tekoah Y (2011) Unique N-glycan moieties of the 66-kDa cell wall glycoprotein from the red microalga Porphyridium sp. J Biol Chem 286:21340–21352

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Majdoub H, Ben Mansour M, Chaubet F, Roudesli MS, Maaroufi RM (2009) Anticoagulant activity of a sulfated polysaccharide from the green alga Arthrospira platensis. Biochim Biophys Acta 1790:1377–1381

    Article  CAS  Google Scholar 

  • Manrique GD, Lajolo FM (2002) FT-IR spectroscopy as a tool for measuring degree of methyl esterification in pectins isolated from ripening papaya fruit. Postharvest Biol Tech 25:99–107

    Article  CAS  Google Scholar 

  • Maréchal Y (1997) Interaction configurations of H2O molecules in a protein (stratum corneum) by infrared spectrometry. J Mol Struct 416:133–143

    Article  Google Scholar 

  • Millard P, Evans LV (1982) Sulphate uptake in the unicellular marine red alga Rhodella maculata. Arch Mikrobiol 131:165–169

    Article  CAS  Google Scholar 

  • Monsigny M, Petit C, Roche AC (1988) Colorimetric determination of neutral sugars by a resorcinol sulphuric acid micromethod. Anal Biochem 175:525–530

    Article  CAS  Google Scholar 

  • Monsoor MA, Kalapathy U, Proctor A (2001) Determination of polygalacturonic acid content in pectin extracts by diffuse reflectance Fourier transform infrared spectroscopy. Food Chem 74:233–238

    Article  CAS  Google Scholar 

  • Montreuil J, Spik G, Chosson A, Segard E, Scheppler N (1963) Methods of study of the structure of glycoproteins. J Pharm Belg 18:529–546

    CAS  PubMed  Google Scholar 

  • Muller-Feuga A, Le Guédes R, Pruvost J (2003) Benefits and limitations of modeling for optimization of Porphyridium cruentum cultures in an annular photobioreactor. J Biotechnol 103 (2):153–163.

    Article  CAS  Google Scholar 

  • Ott FD (1976) Further observations on the freshwater alga Flintiella sanguinaria Ott in Bourrelly 1970 (Rhodophycophyta, Porphyridiales). Arch Protistenkd 118:34–52

    Google Scholar 

  • Page FC, Siemensma FJ (1991) Nackte Rhizopoda und Heliozoea. Gustav Fischer Verlag, Stuttgart, p 297

    Google Scholar 

  • Park G-T, Go R-E, Lee H-M, Lee G-A, Kim C-W, Seo J-W, Hong W-K, Choi K-C, Hwang K-A (2017) Potential anti-proliferative and immunomodulatory effects of marine microalgal exopolysaccharide on various human cancer cells and lymphocytes in vitro. Mar Biotechnol 19:136–146

    Article  CAS  Google Scholar 

  • Percival E, Foyle RAJ (1979) The extracellular polysaccharides of Porphyridium cruentum and Porphyridium aerugineum. Carbohydr Res 72:165–176

    Article  CAS  Google Scholar 

  • Pereira S, Zille A, Micheletti E, Moradas-Ferraira P, De Philippis R, Tamagnini P (2009) Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol Rev 33:917–941

    Article  CAS  Google Scholar 

  • Pruvost J, Cornet J-F (2012) Knowledge models for the engineering and optimization of photobioreactors. In: Posten C, Walter C (eds) Microalgal biotechnology. Walter De Gruyter, Berlin, pp 181–224

    Google Scholar 

  • Pruvost J, Pottier L, Legrand J (2006) Numerical investigation of hydrodynamic and mixing conditions in a torus photobioreactor. Chem Eng Sci 61:4476–4489

    Article  CAS  Google Scholar 

  • Ritz M, Thomas JC, Spilar A, Etienne AL (2000) Kinetics of photoacclimatation in reponse to a shift to high light irradiance of the red algae Rhodella violacea adapted to low irradiance. Plant Physiol 123:1415–1425

    Article  CAS  Google Scholar 

  • Roels JA (1983) Energetics and kinetics in biotechnology. Elsevier Biomedical Press, Amsterdam

    Google Scholar 

  • Roussel M, Villay A, Delbac F, Michaud P, Laroche C, Roriz D, El Alaoui H, Diogon M (2015) Antimicrosporidian activity of sulphated polysaccharide from algae and their potential to control honeybee nosemis. Carbohydr Polym 133:213–220

    Article  CAS  Google Scholar 

  • Scott J (1986) Ultrastructure of cell division in the unicellular red alga Flintiella sanguinaria. Can J Bot 64:516–524

    Article  Google Scholar 

  • Shrestha RP, Weinstein Y, Bar-Zvi D, Arad SM (2004) A glycoprotein noncovalently associated with cell-wall polysaccharide of the red microalga Porphyridium sp. (Rhodophyta). J Phycol 40:568–580

    Article  CAS  Google Scholar 

  • Soanen N, Da Silva E, Gardarin C, Michaud P, Laroche C (2016) Improvement of exopolysaccharide production by Porphyridium marinum. Bioresour Technol 213:231–238

    Article  CAS  Google Scholar 

  • Takache H, Christophe G, Cornet J-F, Pruvost J (2010) Experimental and theoretical assessment of maximum productivities for the micro-algae Chlamydomonas reinhardtii in two different geometries of photobioreactors. Biotechnol Prog 26:431–440

    CAS  PubMed  Google Scholar 

  • Tomar S, Adaganti SY (2013) Production of ethanol using Calliandra shrub by hydrothermal pretreatment method. Int J Curr Engineer Tech 3:1921–1924

    Google Scholar 

  • Toncheva-Panova TG, Ivanova JG (2002) Interactions between the red alga Rhodella reticulata (Rhodophyta) and contaminated bacteria. J Appl Microbiol 93:497–504

    Article  CAS  Google Scholar 

  • Villay A, Laroche C, Roriz D, El Alaoui H, Delbac F, Michaud P (2013) Optimisation of culture parameters for exopolysaccharides production by the microalga Rhodella violacea. Bioresour Technol 146:732–735

    Article  CAS  Google Scholar 

  • Voragen AGJ, Schols HA, Pilnik W (1986) Determination of the degree of methylation and acetylation of pectins by HPLC. Food Hydrocoll 1:65–70

    Article  CAS  Google Scholar 

  • Yokoyama A, Sato K, Hara Y (2004) The generic delimitation of Rhodella (Porphyridiales, Rhodophyta) with emphasis on ultrastructure and molecular phylogeny. Hydrobiologia 512:177–183

    Article  CAS  Google Scholar 

  • Yoon HS, Müller KM, Sheath RG, Ott FD, Bhattacharya D (2006) Defining the major lineages of red algae (Rhodophyta). J Phycol 42:482–492

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the ANR POLYSALGUE project, grant ANR-15-CE21-0013 of the French Agence Nationale de la Recherche.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Céline Laroche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaignard, C., Macao, V., Gardarin, C. et al. The red microalga Flintiella sanguinaria as a new exopolysaccharide producer. J Appl Phycol 30, 2803–2814 (2018). https://doi.org/10.1007/s10811-018-1389-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-018-1389-2

Keywords

Navigation