Skip to main content
Log in

Nannochloropsis sp. ethanol extract prevents macrophage and LDL oxidation and enhances PON1 activity through the principal active compound lyso-diacylglyceryltrimethylhomoserine (lyso-DGTS)

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Oxidation of macrophages and low-density lipoprotein (LDL) plays a role in atherogenesis, whereas high-density lipoprotein (HDL) and its associated protein paraoxonase1 (PON1) contribute to antiatherogenic activities. Microalgae are a food source with a high content of antioxidants and omega-3 fatty acids. In this study, the potential role of extracts of the microalga Nannochloropsis sp. and isolated components in decreasing atherosclerosis risk was examined. A 70% ethanol–water extract of Nannochloropsis sp. inhibited macrophage and LDL oxidation, increased PON1 activity, and protected it from the deleterious effects of linoleic acid hydroperoxide in a dose-dependent manner. The compound responsible for increasing PON1 activity was isolated and its structure was elucidated as the (C20:5,0) lyso-diacylglyceryltrimethylhomoserine (lyso-DGTS) lipid. We suggest that the 70% ethanol–water extract of Nannochloropsis sp. has beneficial effects on decreasing atherosclerotic risk, and that the molecular structure of the active compound that increased lactonase PON1 activity was lyso-DGTS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Atrahimovich D, Vaya J, Tavori H, Khatib S (2012) Glabridin protects paraoxonase 1 from linoleic acid hydroperoxide inhibition via specific interaction: a fluorescence-quenching study. J Agri Food Chem 60(14):3679–3685

    Article  CAS  Google Scholar 

  • Atrahimovich D, Vaya J, Khatib S (2013) The effects and mechanism of flavonoid-rePON1 interactions. Structure-activity relationship study. Bioorg Med Chem 21(11):3348–3355

    Article  PubMed  CAS  Google Scholar 

  • Atrahimovich D, Khatib S, Sela S, Vaya J, Samson AO (2016) Punicalagin induces serum low-density lipoprotein influx to macrophages. Oxidat Med Cell Longev 2016:7124251

    Article  CAS  Google Scholar 

  • Aviram M (1996) Interaction of oxidized low density lipoprotein with macrophages in atherosclerosis, and the antiatherogenicity of antioxidants. Eur J Clin Chem Clin Biochem 34(8):599–608

    PubMed  CAS  Google Scholar 

  • Banskota AH, Stefanova R, Sperker S, McGinn PJ (2013) New diacylglyceryltrimethylhomoserines from the marine microalga Nannochloropsis granulata and their nitric oxide inhibitory activity. J Appl Phycol 25(5):1513–1521

    Article  CAS  Google Scholar 

  • Barter PJ, Puranik R, Rye KA (2007) New insights into the role of HDL as an anti-inflammatory agent in the prevention of cardiovascular disease. Curr Cardiol Rep 9(6):493–498

    Article  PubMed  Google Scholar 

  • Belinky PA, Aviram M, Fuhrman B, Rosenblat M, Vaya J (1998) The antioxidative effects of the isoflavan glabridin on endogenous constituents of LDL during its oxidation. Atherosclerosis 137(1):49–61

    Article  PubMed  CAS  Google Scholar 

  • Boullier A, Bird DA, Chang MK, Dennis EA, Friedman P, Gillotre-Taylor K, Horkko S, Palinski W, Quehenberger O, Shaw P, Steinberg D, Terpstra V, Witztum JL (2001) Scavenger receptors, oxidized LDL, and atherosclerosis. Ann N Y Acad Sci 947:214–222 discussion 222-213

    Article  PubMed  CAS  Google Scholar 

  • Cholesterol Treatment Trialists C, Mihaylova B, Emberson J, Blackwell L, Keech A, Simes J, Barnes EH, Voysey M, Gray A, Collins R, Baigent C (2012) The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet 380(9841):581–590

    Article  CAS  Google Scholar 

  • Evans RW, Kates M, Wood GW (1982) Identification of diacylglecerol-O-(N,N,N-trimethyl)-homoserine in the halotolerant alga, Dunaliella parva. Chem Phys Lipids 31(4):331–338

    Article  CAS  Google Scholar 

  • Fuhrman B, Oiknine J, Aviram M (1994) Iron induces lipid peroxidation in cultured macrophages, increases their ability to oxidatively modify LDL, and affects their secretory properties. Atherosclerosis 111(1):65–78

    Article  PubMed  CAS  Google Scholar 

  • Gu X, Huang Y, Levison BS, Gerstenecker G, DiDonato AJ, Hazen LB, Lee J, Gogonea V, DiDonato JA, Hazen SL (2016) Identification of critical paraoxonase 1 residues involved in high density lipoprotein interaction. J Biol Chem 291(4):1890–1904

    Article  PubMed  CAS  Google Scholar 

  • Gugliucci A, Caccavello R, Nassar H, Abu Ahmad W, Sinnreich R, Kark JD (2015) Low protective PON1 lactonase activity in an Arab population with high rates of coronary heart disease and diabetes. Clin Chim Acta 445:41–47

    Article  PubMed  CAS  Google Scholar 

  • Gur M, Cayli M, Ucar H, Elbasan Z, Sahin DY, Gozukara MY, Selek S, Koyunsever NY, Seker T, Turkoglu C, Kaypakli O, Aksoy N (2014) Paraoxonase (PON1) activity in patients with subclinical thoracic aortic atherosclerosis. Int J Cardivasc Imag 30(5):889–895

    Article  Google Scholar 

  • Hafiane A, Genest J (2015) High density lipoproteins: measurement techniques and potential biomarkers of cardiovascular risk. Biochim Biophys Acta Clinical 3:175–188

    Google Scholar 

  • Heidenreich PA, Trogdon JG, Khavjou OA, Butler J, Dracup K, Ezekowitz MD, Finkelstein EA, Hong Y, Johnston SC, Khera A, Lloyd-Jones DM, Nelson SA, Nichol G, Orenstein D, Wilson PW, Woo YJ (2011) Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation 123(8):933–944

    Article  PubMed  Google Scholar 

  • Hernaez A, Castaner O, Elosua R, Pinto X, Estruch R, Salas-Salvado J, Corella D, Aros F, Serra-Majem L, Fiol M, Ortega-Calvo M, Ros E, Martinez-Gonzalez MA, de la Torre R, Lopez-Sabater MC, Fito M (2017) Mediterranean diet improves high-density lipoprotein function in high-cardiovascular-risk individuals: a randomized controlled trial. Circulation 135(7):633–643

    Article  PubMed  CAS  Google Scholar 

  • Kang K, Park Y, Hwang HJ, Kim SH, Lee JG, Shin HC (2003) Antioxidative properties of brown algae polyphenolics and their perspectives as chemopreventive agents against vascular risk factors. Arch Pharmacol Res 26:286–293

    Article  CAS  Google Scholar 

  • Keidar S, Attias J, Heinrich R, Coleman R, Aviram M (1999) Angiotensin II atherogenicity in apolipoprotein E deficient mice is associated with increased cellular cholesterol biosynthesis. Atherosclerosis 146(2):249–257

    Article  PubMed  CAS  Google Scholar 

  • Khera AV, Cuchel M, de la Llera-Moya M, Rodrigues A, Burke MF, Jafri K, French BC, Phillips JA, Mucksavage ML, Wilensky RL, Mohler ER, Rothblat GH, Rader DJ (2011) Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med 364(2):127–135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kresanov P, Vasankari T, Ahotupa M, Kaikkonen J, Hutri-Kahonen N, Juonala M, Kahonen M, Lehtimaki T, Viikari J, Raitakari OT (2015) Paraoxonase-1 and oxidized lipoprotein lipids. The cardiovascular risk in young Finns study. Atherosclerosis 241(2):502–506

    Article  PubMed  CAS  Google Scholar 

  • Lardon L, Helias A, Sialve B, Steyer JP, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43(17):6475–6481

    Article  PubMed  CAS  Google Scholar 

  • Lusis AJ (2000) Atherosclerosis. Nature 407(6801):233–241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maadane A, Merghoub N, Ainane T, El Arroussi H, Benhima R, Amzazi S, Bakri Y, Wahby I (2015) Antioxidant activity of some Moroccan marine microalgae: PUFA profiles, carotenoids and phenolic content. J Biotech 215:13–19

    Article  CAS  Google Scholar 

  • Mackness M, Mackness B (2015) Human paraoxonase-1 (PON1): gene structure and expression, promiscuous activities and multiple physiological roles. Gene 567(1):12–21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mathew AV, Pennathur S (2014) Macrophages, Oxidative Stress, and Atherosclerosis. In: Mackay I.R., Rose N.R., Diamond B., Davidson A. (eds) Encyclopedia of Medical Immunology. Springer, New York, NY. 693-703

  • Millaoa S, Uquichea E (2016) Antioxidant activity of supercritical extracts from Nannochloropsis gaditana: correlation with its content of carotenoids and tocopherols. J Supercrit Fluids 111:143–150

    Article  CAS  Google Scholar 

  • Miller NE, La Ville A, Crook D (1985) Direct evidence that reverse cholesterol transport is mediated by high-density lipoprotein in rabbit. Nature 314(6006):109–111

    Article  PubMed  CAS  Google Scholar 

  • Moore KJ, Tabas I (2011) Macrophages in the pathogenesis of atherosclerosis. Cell 145(3):341–355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nofer JR, Assmann G (2005) Atheroprotective effects of high-density lipoprotein-associated lysosphingolipids. Trends Cardiovasc Med 15(7):265–271

    Article  PubMed  CAS  Google Scholar 

  • Pirillo A, Norata GD, Catapano AL (2013) Treating high density lipoprotein cholesterol (HDL-C): quantity versus quality. Curr Pharm Design 19(21):3841–3857

    Article  CAS  Google Scholar 

  • Ross R (1995) Cell biology of atherosclerosis. Annu Pev Physiol 57(1):791–804

    Article  CAS  Google Scholar 

  • Ryckebosch E, Bruneel C, Termote-Verhalle R, Goiris K, Muylaert K, Foubert I (2014) Nutritional evaluation of microalgae oils rich in omega-3 long chain polyunsaturated fatty acids as an alternative for fish oil. Food Chem 160:393–400

    Article  PubMed  CAS  Google Scholar 

  • Santos-Gallego CG (2015) HDL: quality or quantity? Atherosclerosis 243(1):121–123

    Article  PubMed  CAS  Google Scholar 

  • Tavori H, Aviram M, Khatib S, Musa R, Nitecki S, Hoffman A, Vaya J (2009) Human carotid atherosclerotic plaque increases oxidative state of macrophages and low-density lipoproteins, whereas paraoxonase 1 (PON1) decreases such atherogenic effects. Free Rad Biol Med 46(5):607–615

    Article  PubMed  CAS  Google Scholar 

  • Tavori H, Aviram M, Khatib S, Musa R, Mannheim D, Karmeli R, Vaya J (2011a) Human carotid lesion linoleic acid hydroperoxide inhibits paraoxonase 1 (PON1) activity via reaction with PON1 free sulfhydryl cysteine 284. Free Rad Biol Med 50(1):148–156

    Article  PubMed  CAS  Google Scholar 

  • Tavori H, Aviram M, Khatib S, Musa R, Mannheim D, Karmeli R, Vaya J (2011b) Paraoxonase 1 protects macrophages from atherogenicity of a specific triglyceride isolated from human carotid lesion. Free Rad Biol Med 51(1):234–242

    Article  PubMed  CAS  Google Scholar 

  • Vogel G, Woznica M, Gfeller H, Mtiller C, Staimpfli A, Jenny TA, Eichenberger W (1990) 1 (3), 2-Diacylglyceryl-3 ( 1 )-O-2′-(hydroxymethyl)(N,N,N-trimethyl)-beta-alanine (DGTA): a novel betaine lipid from Ochromonas danica (Chrysophyceae). Chem Phys Lipids 52(2):99–109

    Article  CAS  Google Scholar 

  • Wang Y, Wang GZ, Rabinovitch PS, Tabas I (2014) Macrophage mitochondrial oxidative stress promotes atherosclerosis and nuclear factor-κB-mediated inflammation in macrophages. Circulat Res 114(3):421–433

    Article  PubMed  CAS  Google Scholar 

  • Yuhanna IS, Zhu Y, Cox BE, Hahner LD, Osborne-Lawrence S, Lu P, Marcel YL, Anderson RG, Mendelsohn ME, Hobbs HH, Shaul PW (2001) High-density lipoprotein binding to scavenger receptor-BI activates endothelial nitric oxide synthase. Nat Med 7(7):853–857

    Article  PubMed  CAS  Google Scholar 

  • Zheng C, Aikawa M (2012) High-density lipoproteins: from function to therapy. J Amer Coll Cardiol 60(23):2380–2383

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the Chief Scientist, Ministry of economy and industry, Israel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soliman Khatib.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khatib, S., Artoul, F., Paluy, I. et al. Nannochloropsis sp. ethanol extract prevents macrophage and LDL oxidation and enhances PON1 activity through the principal active compound lyso-diacylglyceryltrimethylhomoserine (lyso-DGTS). J Appl Phycol 30, 1679–1689 (2018). https://doi.org/10.1007/s10811-017-1373-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-017-1373-2

Keywords

Navigation