The combined effects of PAR and temperature including the chilling-light stress on the photosynthesis of a temperate brown alga, Sargassum patens (Fucales), based on field and laboratory measurements

Abstract

The combined effects of photosynthetically active radiation (PAR) and temperature on the photosynthesis of a temperate Japanese brown alga, Sargassum patens (Fucales), were determined by field and laboratory measurements. Underwater measurements of the natural population of this alga in Kagoshima, Japan, revealed that the effective quantum yield (Φ PSII ) declined with increasing incident PAR, with minimum Φ PSII occurring during noon to early afternoon. Φ PSII recovered in the evening, indicating dynamic photoinhibition. In laboratory experiments, Φ PSII was also negatively correlated with PAR, which decreased after 12 h of continuous exposure to 200 (low) and 1000 (high) μmol photons m−2 s−1 at 8, 20, and 28 °C. Maximum quantum yield (F v /F m ) at 8 °C with low PAR failed to recover after 12 h of dark acclimation, suggesting the influence of low temperature in chronic photoinhibition. Photosynthesis–irradiance (PE) curves likewise revealed lower net photosynthetic rates and photoinhibition at 8 °C. Gross photosynthesis and dark respiration experiments determined over a range of temperatures (8–40 °C) revealed that the maximum gross photosynthetic rate (GP max) occurred at 26.9 °C. F v /F m after 72 h of temperature exposures was stable at 8–32 °C; but it was deactivated at 36 and 40 °C. This species is well-adapted to the current range of temperature in the temperate region of Japan (7–28 °C). However, the combined effects of low temperature and PAR may influence algal photosynthetic efficiency and so may be limiting at the marginal region of northern distribution of this temperate species.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abdala-Díaz RT, Cabello-Pasini A, Pérez-Rodriguez E, Conde Álvarez RM, Figueroa FL (2006) Daily and seasonal variations of optimum quantum yield and phenolic compounds in Cystoseira tamariscifolia (Phaeophyta). Mar Biol 148:459–465

    Article  CAS  Google Scholar 

  2. Adey WH, Steneck RS (2001) Thermogeography over time creates biogeographic regions: a temperature/space/time-integrated model and an abundance-weighted test for benthic marine algae. J Phycol 37:677–698

    Article  Google Scholar 

  3. Alexandrov GA, Yamagata Y (2007) A peaked function for modeling temperature dependence of plant productivity. Ecol Model 200:189–192

    Article  Google Scholar 

  4. Allakhverdiev SI, Murata N (2004) Environmental stress inhibits the synthesis de novo of proteins involved in the photodamage-repair cycle of photosystem II in Synechocystis sp. PCC 6803. Biochim Biophys Acta 1657:23–32

    Article  PubMed  CAS  Google Scholar 

  5. Allakhverdiev SI, Kreslavski V, Klimov V, Los D, Carpentier R, Mohanty P (2008) Heat stress: an overview of molecular responses in photosynthesis. Photosyn Res 98:541–550

    Article  PubMed  CAS  Google Scholar 

  6. Baba M (2007) Effects of temperature and irradiance on gerrnling growth in eight Sargassaceous species. Rep Mar Ecol Res Inst 10:9–20 (in Japanese with English Abstract)

    Google Scholar 

  7. Beer S, Björk M, Beardall J (2014) Photosynthesis in the marine environment. 224 p., Wiley-Blackwell, Ames, Iowa

  8. Bellasio C, Burgess SJ, Griffiths H, Hibberd JM (2014) A high throughput gas exchange screen for determining rates of photorespiration or regulation of C4 activity. J Exp Bot 65:3769–3779

    Article  PubMed  PubMed Central  Google Scholar 

  9. Borlongan IA, Nishihara GN, Shimada S, Terada R (2017) Effects of temperature and PAR on the photosynthesis of Kappaphycus sp. (Solieriaceae, Rhodophyta) from Okinawa, Japan, at the northern limit of native Kappaphycus distribution in the western Pacific. Phycologia 56:444–453

    Article  Google Scholar 

  10. Cho SM, Lee SM, Ko YD, Mattio L, Boo SM (2012) Molecular systematic reassessment of Sargassum (Fucales, Phaeophyceae) in Korea using four gene regions. Bot Mar 55:473–484

    Article  Google Scholar 

  11. De Wreede RE (1976) The phenology of three species of Sargassum (Sargassaceae, Phaeophyta) in Hawaii. Phycologia 15:175–183

    Article  Google Scholar 

  12. De Wreede RE (1978) Phenology of Sargassum muticum (Phaeophyta) in the Strait of Georgia, British Columbia. Syesis 11:l–9

    Google Scholar 

  13. Eggert A (2012) Seaweed responses to temperature. In: Wiencke C, Bischof K (eds) Seaweed biology. Springer, Berlin, pp 47–66.

    Google Scholar 

  14. Eggert A, Wiencke C (2000) Adaptation and acclimation of growth and photosynthesis of five Antarctic red algae to low temperatures. Polar Biol 23:609–618

    Article  Google Scholar 

  15. Endo H, Suehiro K, Kinoshita J, Gao X, Agatsuma Y (2013) Combined effects of temperature and nutrient availability on growth and phlorotannin concentration of the brown alga Sargassum patens (Fucales; Phaeophyceae). Am J Plant Sci 4:14–20

    Article  CAS  Google Scholar 

  16. Ensminger I, Xylander M, Hagen C, Braune W (2001) Strategies providing success in a variable habitat. III. Dynamic control of photosynthesis in Cladophora glomerata. Plant Cell Environ 24:769–779

    Article  CAS  Google Scholar 

  17. Fairhead VA, Cheshire AC (2004) Seasonal and depth related variation in the photosynthesis-irradiance response of Ecklonia radiata (Phaeophyta, Laminariales) at West Island, South Australia. Mar Biol 145:415–426

  18. Faraway JJ (2016) Extending the linear model with R, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  19. Gao K (1991) Comparative photosynthetic capacities of different parts of Sargassum horneri (Phaeophyta). Jpn. J Phycol 39:245–252

    Google Scholar 

  20. Gao K, Umezaki I (1988) Comparative photosynthetic capacities of the leaves of upper and lower parts of Sargassum plants. Bot Mar 31:231–236

    Article  CAS  Google Scholar 

  21. Gelman A (2004) Parameterization and Bayesian modeling. J Amer Stat Assoc 99:537–545

    Article  Google Scholar 

  22. Gelman A (2006) Prior distributions for variance parameters in hierarchical models. Bayesian Anal 1:515–533

    Article  Google Scholar 

  23. Gévaert F, Créach A, Davoult D, Migné A, Levavasseur G, Arzel P, Holl AC, Lemoine Y (2003) Laminaria saccharina photosynthesis measured in situ: photoinhibition and xanthophyll cycle during a tidal cycle. Mar Ecol Prog Ser 247:43–50

    Article  Google Scholar 

  24. Hanelt D, Figueroa FL (2012) Physiological and photomorphogenic effects of light on marine macrophytes. In: Wiencke C, Bischof K (eds) Seaweed biology. Springer, Berlin, pp 3–23

    Google Scholar 

  25. Hanelt D, Huppertz K, Nultsch W (1993) Daily course of photosynthesis and photoinhibition in marine macroalgae investigated in the laboratory and field. Mar Ecol Prog Ser 97:31–37

    Article  Google Scholar 

  26. Haraguchi H, Murase N, Mizukami Y, Noda M, Yoshida G, Terawaki T (2005) The optimal and maximum critical temperatures of nine species of the Sargassaceae in the coastal waters of Yamaguchi Prefecture, Japan. Jpn J Phycol 53:7–13 (in Japanese with English Abstract)

    Google Scholar 

  27. Henley WJ (1993) Measurement and interpretation of photosynthetic light-response curves in algae in the context of photo inhibition and diel changes. J Phycol 29:729–739

    Article  Google Scholar 

  28. Japan Oceanographic Data Center (2017) JODC Data On-line Service System. http://jdoss1.jodc.go.jp/vpage/coastal_j.html (acessed on 24 June 2017; in Japanese)

  29. Jassby AD, Platt T (1976) Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol Oceanogr 21:540–547

    Article  CAS  Google Scholar 

  30. Kokubu S, Nishihara GN, Watanabe Y, Tsuchiya Y, Amano Y, Terada R (2015) The effect of irradiance and temperature on the photosynthesis of a native brown alga, Sargassum fusiforme (Fucales) from Kagoshima, Japan. Phycologia 54:235–547

    Article  CAS  Google Scholar 

  31. Martin-Smith KM (1993) The phenology of four species of Sargassum at magnetic island, Australia. Bot Mar 36:327–334

    Article  Google Scholar 

  32. McCourt RM (1984) Seasonal patterns of abundance, distributions, and phenology in relation to growth strategies of three Sargassum species. J Exp Mar Biol Ecol 74:141–156

    Article  Google Scholar 

  33. Platt T, Gallegos CL, Harrison WG (1980) Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J Mar Res 38:687–701

    Google Scholar 

  34. R Development Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3–900051–07-0, URL http://www.R-project.org (acessed on 10 May 2017)

  35. Raven JA, Hurd CL (2012) Ecophysiology of photosynthesis in macroalgae. Photsynth Res 113:105–125

    Article  CAS  Google Scholar 

  36. Roleda MY (2009) Photosynthetic response of Arctic kelp zoospores exposed to radiation and thermal stress. Photobiol Sci 8:1302–1312

    Article  CAS  Google Scholar 

  37. Rothäusler E, Gömez I, Karsten U, Tala F, Thiel M (2011) Physiological acclimation of floating Macrocystis pyrifera to temperature and irradiance ensures long-term persistence at the sea surface at mid-latitudes. J Exp Mar Biol Ecol 405:33–41

    Article  Google Scholar 

  38. Stan Development Team (2017) Stan: A C++ Library for Probability and Sampling, Version 2.14.2. URL: http://mc-stan.org (acessed on 10 May 2017)

  39. Takahashi S, Murata N (2008) How do environmental stresses accelerate photoinhibition? Trends Plant Sci 13:178–182

    Article  PubMed  CAS  Google Scholar 

  40. Tala F, Penna-Díaz MA, Luna-Jorquera G, Rothäusler E, Thiel M (2017) Daily and seasonal changes of photobiological responses in floating bull kelp Durvillaea antarctica (Chamisso) Hariot (Fucales: Phaeophyceae). Phycologia 56:271–283

    Article  CAS  Google Scholar 

  41. Taniguchi K, Yamada Y (1978) Ecological study on Sargassum patens C. Agardh and S. serratifolium C. Agardh in the sublittoral zone at Iida Bay of Noto Peninsula in the Sea of Japan. Bull J Sea Nat Fish Res Inst 29:239–253 (in Japanese with English Abstract)

    Google Scholar 

  42. Tcherkez G, Bligny R, Gout E, Mahé A, Hodges M, Cornic G (2008) Respiratory metabolism of illuminated leaves depends on CO2 and O2 conditions. Proc Natl Acad Sci U S A 105:797–802

    Article  PubMed  PubMed Central  Google Scholar 

  43. Terada R, Shikada S, Watanabe Y, Nakazaki Y, Matsumoto K, Kozono J, Saino N, Nishihara GN (2016a) Effect of PAR and temperature on the photosynthesis of Japanese alga, Ecklonia radicosa (Laminariales), based on field and laboratory measurements. Phycologia 55:178–186

    Article  CAS  Google Scholar 

  44. Terada R, Vo TD, Nishihara GN, Matsumoto K, Kokubu S, Watanabe Y, Kawaguchi S (2016b) The effect of PAR and temperature on the photosynthesis of two Vietnamese species of Sargassum, Sargassum mcclurei and Sargassum oligocystum, based on the field and laboratory measurements. Phycol Res 64:230–240

    Article  CAS  Google Scholar 

  45. Terada R, Vo TD, Nishihara GN, Shioya K, Shimada S, Kawaguchi S (2016c) The effect of irradiance and temperature on the photosynthesis and growth of a cultivated red alga Kappaphycus alvarezii (Solieriaceae) from Vietnam, based on in situ and in vitro measurements. J Appl Phycol 28:457–467

    Article  CAS  Google Scholar 

  46. Thornley JHM, Johnson IR (2000) Plant and crop modelling: a mathematical approach to plant and crop physiology. Blackburn Press, Caldwell, New Jersey, 669 pp

    Google Scholar 

  47. Titlyanov EA, Titlyanova TV (2012) Marine plants of the Asian Pacific region countries, their use and cultivation. Dalnauka and A.V. Zhirmunsky Institute of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, 376 pp.

  48. Tseng CK, Lu B (2000) Flora algarum marinarum sinicarum Tomus III Phaeophyta No. II Fucales. Science Press, Beijing (in Chinese)

    Google Scholar 

  49. Tsuchiya Y, Sakaguchi Y, Terada R (2011) Phenology and environmental characteristics of four Sargassum species (Fucales): S. piluliferum, S. patens, S. crispifolium, and S. alternato-pinnatum from Sakurajima, Kagoshima Bay, southern Japan. Jpn J Phycol 59:1–8 (in Japanese with English Abstract)

    Google Scholar 

  50. Tsuchiya Y, Nishihara GN, Terada R (2012) Photosynthetic and temperature characteristics of five Sargassum species (Fucales), S. piluliferum, S. patens, S. fusiforme, S. crispifolium and S. alternato-pinnatum from Kagoshima, Japan, using dissolved oxygen sensor and pulse-amplitude-modulated (PAM) fluorometer. Nippon Suisan Gakkaishi 78:189–197 (in Japanese with English Abstract)

    Article  Google Scholar 

  51. Tsukidate J (1984) On the most suitable growth conditions of young thalli of Sargassum patens C. Agardh and Sargassum tortile C. Agardh. Bull Nansei Reg Fish Res Lab 16:1–9 (in Japanese with English Abstract)

    Google Scholar 

  52. Watanabe Y, Nishihara GN, Tokunaga S, Terada R (2014a) The effect of irradiance and temperature responses and the phenology of a native alga, Undaria pinnatifida (Laminariales), at the southern limit of its natural distribution in Japan. J Appl Phycol 26:2405–2415

    Article  CAS  Google Scholar 

  53. Watanabe Y, Nishihara GN, Tokunaga S, Terada R (2014b) The effect of irradiance and temperature on the photosynthesis of a cultivated red alga, Pyropia tenera (= Porphyra tenera), at the southern limit of distribution in Japan. Phycol Res 62:187–196

    Article  CAS  Google Scholar 

  54. Watanabe Y, Yamada H, Mine Y, Kawamura Y, Nishihara GN, Terada R (2016) Photosynthetic responses of Pyropia yezoensis f. narawaensis (Bangiales, Rhodophyta) to a thermal and PAR gradient vary with the life-history stage. Phycologia 55:665–672

    Article  CAS  Google Scholar 

  55. Webb WL, Newton M, Starr D (1974) Carbon dioxide exchange of Alnus rubra: a mathematical model. Oecologia 17:281–291

    Article  PubMed  Google Scholar 

  56. Wing SR, Patterson MR (1993) Effects of wave-induced lightflecks in the intertidal zone on photosynthesis in the macroalgae Postelsia palmaeformis and Hedophyllum sessile (Phaeophyceae). Mar Biol 116:519–525

    Article  Google Scholar 

  57. Yoshida T (1998) Marine algae of Japan. Uchida Rokakuho, Tokyo (in Japanese)

    Google Scholar 

  58. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GA (2009) Mixed effects models and extensions in ecology with R. Springer, New York, NY

    Google Scholar 

Download references

Acknowledgements

This research was supported in part by the Grant-in-Aid for Scientific Research (#25340012, #25450260, #26241027, and #16H02939) from the Japan Society for the Promotion of Science (JSPS) and the Japanese Ministry of Education, Culture, Sport and Technology (MEXT). All authors have provided consent.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ryuta Terada.

Electronic supplementary material

ESM 1

(DOCX 34 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Terada, R., Matsumoto, K., Borlongan, I.A. et al. The combined effects of PAR and temperature including the chilling-light stress on the photosynthesis of a temperate brown alga, Sargassum patens (Fucales), based on field and laboratory measurements. J Appl Phycol 30, 1893–1904 (2018). https://doi.org/10.1007/s10811-017-1344-7

Download citation

Keywords

  • Algae
  • Chilling-light stress
  • Diurnal change
  • Pulse amplitude modulation (PAM)-chlorophyll fluorometry
  • Sargassaceae