Journal of Applied Phycology

, Volume 30, Issue 1, pp 663–671 | Cite as

Metal assessment and cellular accumulation dynamics in the green macroalga Ulva lactuca

  • Felipe A. Valdés
  • M. Gabriela Lobos
  • Patricia Díaz
  • Claudio A. Sáez


We have tested Ulva lactuca Linnaeus as a metal biomonitor by measuring the concentrations of metals copper (Cu), cadmium (Cd), zinc (Zn), and mercury (Hg) in its biomass and in nearby sediments, within impacted and non-impacted sites in central Chile. Moreover, through Cu exposure laboratory experiments, we observed the dynamics of intracellular and extracellular Cu accumulation in two populations of U. lactuca. Highest metal levels in U. lactuca were associated with human activities; the exception was Cd, with high levels in the control site, although this could be explained due to the important nearby upwelling conditions. Laboratory experiments showed that more of the 90% of the total Cu in the two populations of U. lactuca was accumulated intracellularly, without intra-specific differences. Biomonitoring with U. lactuca provides a positive representation of metal status, which is reinforced in combination with metal measurements in sediments. Weak patterns in metal exclusion suggest the use of different strategies to counteract metal excess in U. lactuca, for instance, associated with the syntheses of metal chelators and the antioxidant metabolism.


Seaweed Metal tolerance Chlorophyta Cell wall Metal pollution 



We thank the financial support from project Convenio Desempeño UPA 1301 at the University of Playa Ancha to C.A. Sáez. We also appreciate the budget contribution from FONDECYT project nos. 11160369 and 1150855 granted to C.A. Sáez and M.G. Lobos, respectively, and project FONDEQUIP no. EQM120169 to M.G. Lobos.


  1. Abe K, Matsumaga K (1988) Mechanism controlling Cd and PO4 concentration in Funka Bay, Japan. Mar Chem 23:145–152CrossRefGoogle Scholar
  2. Andrade LR, Farina M, Amado GM (2004) Effects of copper on Enteromorpha flexuosa (Chlorophyta) in vitro. Ecotoxicol Environ Saf 58:117–125CrossRefPubMedGoogle Scholar
  3. Brown MT, Depledge MH (1998) Determinants of trace metal concentrations in marine organisms. In: Bebianno MJ, Langston WJ (eds) Metabolism of trace metals in aquatic organisms. Chapman & Hall, London, pp 185–217CrossRefGoogle Scholar
  4. Bruland K (1980) Oceanographic distribution of cadmium, zinc, nickel and copper in the north Pacific. Earth Planet Sci Lett 47:176–198CrossRefGoogle Scholar
  5. Burger J, Gochfeld M, Jeitner C, Gray M, Shukla T, Burke S (2007) Kelp as a bioindicator: does it matter which part of 5 m long plant is used for metal analysis? Environ Monit Assess 128:311–321CrossRefPubMedGoogle Scholar
  6. Currie LA (1999) Detection and quantification limits: origins and historical overview. Anal Chim Acta 391:127–134CrossRefGoogle Scholar
  7. Diop M, Howsam M, Diop C, Goossens JF, Diouf A, Amara R (2016) Assessment of trace element contamination and bioaccumulation in algae (Ulva lactuca), mussels (Perna perna), shrimp (Penaeus kerathurus), and fish (Mugil cephalus, Saratherondon melanotheron) along the Senegalese coast. Mar Poll Bull 103:339–343CrossRefGoogle Scholar
  8. dos Santos RW, Schmidt ÉC, de L Felix MR, Polo LK, Kreusch M, Pereira DT, Costa GB, Simioni C, Chow F, Ramlov F, Maraschin M, Bouzon ZL (2014) Bioabsorption of cadmium, copper and lead by the red macroalga Gelidium floridanum: physiological responses and ultrastructure features. Ecotoxicol Environ Saf 105:80–89CrossRefPubMedGoogle Scholar
  9. Gaudry A, Zeroual S, Gaie-Levrel F, Moskura M, Boujrhal F-Z, El Moursli RC, Guessous A, Mouradi A, Givernaud T, Delmas R (2007) Heavy metals pollution of the Atlantic marine environment by the Moroccan phosphate industry, as observed through their bioaccumulation in Ulva lactuca. Water Air Soil Pollut 178:267–285CrossRefGoogle Scholar
  10. Gledhill M, Brown MT, Nimmo M, Moate R, Hill SJ (1998) Comparison of techniques for the removal of particulate material from seaweed tissue. Mar Environ Res 45:295–307CrossRefGoogle Scholar
  11. Gómez M, González A, Sáez CA, Moenne A (2016) Copper-induced membrane depolarizations involve the induction of mosaic TRP channels, which activate VDCC leading to calcium increases in Ulva compressa. Front Plant Sci 7:754CrossRefPubMedPubMedCentralGoogle Scholar
  12. Gómez M, González A, Sáez CA, Morales B, Moenne A (2015) Copper-induced activation of TRP channels promotes extracellular calcium entry and activation of CaMs and CDPKs leading to copper entry and membrane depolarization in Ulva compressa. Front Plant Sci 6:182PubMedPubMedCentralGoogle Scholar
  13. Gonzalez-Bermudez Y, Rodriguez Rico IL, Gutierrez Bermudez O, Guibal E (2011) Nickel biosorption using Gracilaria caudata and Sargassum muticum. Chem Eng J 166:122–131CrossRefGoogle Scholar
  14. González A, Cabrera Mde L, Henriquez MJ, Contreras RA, Morales B, Moenne A (2012) Cross talk among calcium, hydrogen peroxide, and nitric oxide and activation of gene expression involving calmodulins and calcium-dependent protein kinases in Ulva compressa exposed to copper excess. Plant Physiol 158:1451–1462CrossRefPubMedPubMedCentralGoogle Scholar
  15. González A, Vera J, Castro J, Dennett G, Mellado M, Morales B, Correa JA, Moenne A (2010) Co-occurring increases of calcium and organellar reactive oxygen species determine differential activation of antioxidant and defense enzymes in Ulva compressa (Chlorophyta) exposed to copper excess. Plant Cell Environ 33:1627–1640CrossRefPubMedGoogle Scholar
  16. Green-Ruiz C, Ruelas-Inzunza J, Páez-Osuna F (2005) Mercury in surface sediments and benthic organisms from Guaymas Bay, east coast of the Gulf of California. Environ Geochem Heal 27:321CrossRefGoogle Scholar
  17. Huang H, Liang J, Wu X, Zhang H, Li Q, Zhang Q (2013) Comparison in copper accumulation and physiological responses of Gracilaria lemaneiformis and G. lichenoides (Rhodophyceae). Chin J Oceanol Limnol 31:803–812CrossRefGoogle Scholar
  18. Huovinen P, Gómez I (2012) Cold temperate seaweed communities of the southern hemisphere. In: Wiencke C, Bischof K (eds) Seaweed biology. Novel insights into ecophysiology, ecology and utilization. Springer, Berlin, pp. 293–313Google Scholar
  19. Kalin M, Wheeler WN, Meinrath G (2005) The removal of uranium from mining waste water using algal/microbial biomass. J Environ Radioact 78:151–177CrossRefPubMedGoogle Scholar
  20. Laib E, Leghouchi E (2012) Cd, Cr, Cu, Pb, and Zn concentrations in Ulva lactuca, Codium fragile, Jania rubens, and Dictyota dichotoma from Rabta Bay, Jijel (Algeria). Environ Monit Assess 184:1711–1718CrossRefPubMedGoogle Scholar
  21. Medina M, Andrade S, Faugeron S, Lagos N, Mella D, Correa J (2005) Biodiversity of rocky intertidal benthic communities associated with copper mine tailing discharges in northern Chile. Mar Pollut Bull 50:396–409CrossRefPubMedGoogle Scholar
  22. Mehta SK, Tripathi BN, Gaur JP (2000) Influence of pH, temperature, culture age and cations on adsorption and uptake of Ni by Chlorella vulgaris. Eur J Protistol 36:443–450CrossRefGoogle Scholar
  23. MINSAL (1997) Reglamento Sanitario de los Alimentos. República de Chile, SantiagoGoogle Scholar
  24. Moenne A, González A, Sáez CA (2016) Mechanisms of metal tolerance in marine macroalgae, with emphasis on copper tolerance in Chlorophyta and Rhodophyta. Aquat Toxicol 176:30–37CrossRefPubMedGoogle Scholar
  25. Ratkevicius N, Correa JA, Moenne A (2003) Copper accumulation, synthesis of ascorbate and activation of ascorbate peroxidase in Enteromorpha compressa (L.) Grev. (Chlorophyta) from heavy metal-enriched environments in northern Chile. Plant Cell Environ 26:1599–1608CrossRefGoogle Scholar
  26. Roncarati F, Sáez CA, Greco M, Gledhill M, Bitonti MB, Brown MT (2015) Response differences between Ectocarpus siliculosus populations to copper stress involve cellular exclusion and induction of the phytochelatin biosynthetic pathway. Aquat Toxicol 159:167–175CrossRefPubMedGoogle Scholar
  27. Sáez CA, González A, Contreras RA, Moody AJ, Moenne A, Brown MT (2015a) A novel field transplantation technique reveals intra-specific metal-induced oxidative responses in strains of Ectocarpus siliculosus with different pollution histories. Environ Pollut 199:130–138CrossRefPubMedGoogle Scholar
  28. Sáez CA, Lobos MG, Macaya E, Oliva D, Quiroz W, Brown MT (2012a) Variation in patterns of metal accumulation in thallus parts of Lessonia trabeculata (Laminariales; Phaeophyceae): implications for biomonitoring. PLoS One 7:e50170CrossRefPubMedPubMedCentralGoogle Scholar
  29. Sáez CA, Pérez-Matus A, Lobos MG, Oliva D, Vásquez JA, Bravo M (2012b) Environmental assessment in a shallow subtidal rocky habitat: approach coupling chemical and ecological tools. Chem Ecol 28:1–15CrossRefGoogle Scholar
  30. Sáez CA, Ramesh K, Greco M, Bitonti MB, Brown MT (2015b) Enzymatic antioxidant defences are transcriptionally regulated in Es524, a copper-tolerant strain of Ectocarpus siliculosus (Ectocarpales; Phaeophyceae). Phycologia 54:425–429CrossRefGoogle Scholar
  31. Sáez CA, Roncarati F, Moenne A, Moody JA, Brown MT (2015c) Copper-induced intra-specific oxidative damage and antioxidant responses in strains of the brown alga Ectocarpus siliculosus with different pollution histories. Aquat Toxicol 159:81–89CrossRefPubMedGoogle Scholar
  32. Schmidt EC, Kreusch M, Felix MR, Pereira DT, Costa GB, Simioni C, Ouriques LC, Farias-Soares FL, Steiner N, Chow F, Ramlov F, Maraschin M, Bouzon ZL (2015) Effects of ultraviolet radiation (UVA plus UVB) and copper on the morphology, ultrastructural organization and physiological responses of the red alga Pterocladiella capillacea. Photochem Photobiol 91:359–370CrossRefPubMedGoogle Scholar
  33. Schramm W, Nienhuis PH (eds) (2012) Marine benthic vegetation: recent changes and the effects of eutrophication. Springer, HeidelbergGoogle Scholar
  34. Silva N, Valdenegro A (2003) Evolución de un evento de surgencia frente a punta Curaumilla. Valparaíso Investigaciones Marinas 31:73–89Google Scholar
  35. Stengel DB, McGrath H, Morrison LJ (2005) Tissue Cu, Fe and Mn concentrations in different-aged and different functional thallus regions of three brown algae from western Ireland. Estuar Coast Shelf Sci 65:687–696CrossRefGoogle Scholar
  36. Taverniers I, De Loose M, Van Bockstaele E (2004) Trends in quality in the analytical laboratory. II. Analytical method validation and quality assurance. Trends Anal Chem 23:535–552CrossRefGoogle Scholar
  37. Turner A, Pollock H, Brown MT (2009) Accumulation of Cu and Zn from antifouling paint particles by the marine macroalga, Ulva lactuca. Environ Pollut 157:2314–2319CrossRefPubMedGoogle Scholar
  38. Valdivia N, Díaz MJ, Holtheuer J, Garrido I, Huovinen P, Gómez I (2014) Up, down, and all around: scale-dependent spatial variation in rocky-shore communities of Fildes Peninsula, King George Island, Antarctica. PLoS One 9:e100714CrossRefPubMedPubMedCentralGoogle Scholar
  39. Zhou JL, Huang PL, Lin RG (1998) Sorption and desorption of Cu and Cd by macroalgae and microalgae. Environ Pollut 101:67–75CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Laboratory of Coastal Environmental Research, Centre of Advanced StudiesUniversity of Playa AnchaViña del MarChile
  2. 2.Department of Environment, Faculty of EngineeringUniversity of Playa AnchaValparaísoChile
  3. 3.Laboratory of Analytical and Environmental Chemistry, Institute of Chemistry and BiochemistryUniversity of ValparaísoValparaísoChile

Personalised recommendations