Selective bioaccumulation of rubidium by microalgae from industrial wastewater containing rubidium and lithium

An Erratum to this article is available

This article has been updated


Bioaccumulation of rubidium (Rb+) and lithium (Li+) from alkaline wastewater containing 480 mg L−1 Rb+ and 540 mg L−1 Li+, a by-product of zinnwaldite processing, was studied at laboratory scale using growing freshwater microalgae (Chlorella vulgaris, Desmodesmus quadricauda and Scenedesmus obliquus). Bioaccumulation of Li+ was very low, while the bioaccumulation of Rb+ was significant by all tested strains. The best result was found for C. vulgaris, which accumulated 54% of the original amount of rubidium in growth media (48 mg L−1) within 4 days. In addition, the wastewater did not affect the growth rate of C. vulgaris. The effect of potassiun (K+) concentration on total bioaccumulation of alkali metal ions and its selectivity by C. vulgaris was also tested. The highest K+ concetration (334 mg L−1) resulted in bioaccumulation of 4.3 mg Rb+ per gram of biomass with Rb+:Li+ uptake ratio of 26.9. By decreasing the K+ concetration in medium (56 mg L−1), the total bioaccumulation improved (4.70 Li+ per gram of biomass, 5.93 Rb+ per gram of biomass) but at the cost of lower selectivity (Rb+:Li+ uptake ratio 1.3). These findings have a potential of practical utilization, as both Rb+ and Li+can be recovered from biomass by incineration and subsequent chemical separation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Change history

  • 13 September 2017

    An erratum to this article has been published.


  1. Ajayan KV, Selvaraju M, Thirugnanamoorthy K (2011) Growth and heavy metals accumulation potential of microalgae grown in sewage wastewater and petrochemical effluents. Pak J Biol Sci 14:805–811

    CAS  Article  PubMed  Google Scholar 

  2. Arunakumara KKIU, Zhang X (2008) Heavy metal bioaccumulation and toxicity with special reference to microalgae. J Ocean Univ China 7:60–64

    CAS  Article  Google Scholar 

  3. Branyikova I, Marsalkova B, Doucha J, Branyik T, Bisova K, Zachleder V, Vitova M (2011) Microalgae-novel highly efficient starch producers. Biotechnol Bioeng 108:766–776

    CAS  Article  PubMed  Google Scholar 

  4. Butterman WC, Reese RG Jr (2003) Mineral commodity profiles rubidium. U.S. Geological Survey, Open-File Report 03–045. Accessed 7 Aug 2017

  5. Campbell LM, Fisk AT, Wang XW, Kock G, Muir DCG (2005) Evidence for biomagnification of rubidium in freshwater and marine food webs. Can J Fish Aquat Sci 62:1161–1167

    CAS  Article  Google Scholar 

  6. Doshi H, Ray A, Kothari IL (2007) Biosorption of cadmium by live and dead Spirulina: IR spectroscopic, kinetics, and SEM studies. Curr Microbiol 54:213–218

    CAS  Article  PubMed  Google Scholar 

  7. Doshi H, Seth C, Ray A, Kothari IL (2008) Bioaccumulation of heavy metals by green algae. Curr Microbiol 56:246–255

    CAS  Article  PubMed  Google Scholar 

  8. Douskova I, Doucha J, Livansky K, Machat J, Novak P, Umysova D, Zachleder V, Vitova M (2009) Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs. Appl Microbiol Biotechnol 82:179–185

    CAS  Article  PubMed  Google Scholar 

  9. EPA–U.S. Environmental Protection Agency (1996) Method 3050B acid digestion of sediments, sludges, and soils

  10. Gin K, Tang YZ, Aziz MA (2001) Heavy metal uptake by algae. In: Kojima H, Lee YK (eds) Photosynthetic microorganisms in environmental biotechnology. Springer, Berlin, pp 137–169

    Google Scholar 

  11. Jandova J, Dvorak P, Vu HN (2010) Processing of zinnwaldite waste to obtain Li2CO3. Hydrometallurgy 103:12–18

    CAS  Article  Google Scholar 

  12. Jandova J, Dvorak P, Formanek J, Vu HN (2012a) Recovery of rubidium and potassium alums from lithium-bearing minerals. Hydrometallurgy 119:73–76

    Article  Google Scholar 

  13. Jandova J, Dvorak P, Kondas J, Havlak L (2012b) Recovery of lithium from waste materials. Ceramics-Silikaty 56(1):50–54

    CAS  Google Scholar 

  14. Kaplan D (2013) Absorption and adsorption of heavy metals by microalgae. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology. Wiley, London, pp 602–611

    Google Scholar 

  15. Kosla T, Skibniewska E, Debski B, Urbanska-Slomka G (2002) Rubidium in the trophic chain soil-plants-animals. Trace Elem Electrolytes 19:171–176

    CAS  Google Scholar 

  16. Kumar K, Ghosh S, Angelidaki I, Holdt SL, Karakashev DB, Morales MA, Das D (2016) Recent developments on biofuels production from microalgae and macroalgae. Renew Sust Energ Rev 65:235–249

    CAS  Article  Google Scholar 

  17. Marczenko Z, Balcerzak M (2000) Alkali metals. In: Kloczko E (ed) Separation, preconcentration and spectrophotometry in inorganic analysis, 1st edn. Elsevier Science, Amsterdam, p 77–82

  18. Mehta SK, Gaur JP (2005) Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit Rev Biotechnol 25:113–152

    CAS  Article  PubMed  Google Scholar 

  19. Mohite BS, Khopkar SM (1985) Solvent-extraction separation of rubidium with dicyclohexano-18-crown-6. Talanta 32:565–567

    CAS  Article  PubMed  Google Scholar 

  20. Nespurkova L, Rybova R, Janacek K (1987) Parallel pathways of potassium transport in the alga Hydrodictyon-reticulatum. Effects of calcium. Gen Physiol Biophys 6:263–270

    CAS  PubMed  Google Scholar 

  21. Nilsa GMBH (2017) Berlin, Germany, world-wide electronic catalog.; searched on 17 Jul 2017

  22. Rezvani S, Moheimani NR, Bahri PA (2016) Techno-economic assessment of CO2 bio-fixation using microalgae in connection with three different state-of-the-art power plants. Comput Chem Eng 84:290–301

    CAS  Article  Google Scholar 

  23. Ritchie RJ (1997) Rubidium transport in the cyanobacterium Synechococcus R-2 (Anacystis nidulans, S. leopoliensis) PCC 7942. Plant Cell Environ 20:907–918

    CAS  Article  Google Scholar 

  24. Rubidium (2012) Rubidium element facts.; searched on 3 Feb 2017

  25. Sigma-Aldrich Corp (2017) St. Louis, MO, USA, world-wide electronic catalog.; searched on 17 Jul 2017

  26. Smart-elements GmbH (2017) Vienna, Austria, world-wide electronic catalog.; searched on 17 Jul 2017

  27. Usuda K, Kono R, Ueno T, Ito Y, Dote T, Yokoyama H, Kono K, Tamaki J (2014) Risk assessment visualization of rubidium compounds: comparison of renal and hepatic toxicities, in vivo. Biol Trace Elem Res 159:263–268

    CAS  Article  PubMed  Google Scholar 

  28. West KR, Pitman MG (1967) Rubidium as a tracer for potassium in the marine algae Ulva lactula L. and Chaetomorpha darwinii (Hooker) Kuetzing. Nature 214:1262–1263

    CAS  Article  Google Scholar 

  29. Wilde EW, Benemann JR (1993) Bioremoval of heavy metals by the use of microalgae. Biotechnol Adv 11:781–812

    CAS  Article  PubMed  Google Scholar 

  30. Xin CH, Addy MM, Zhao JY, Cheng YL, Cheng SB, Mu DY, Liu YH, Ding RJ, Chen P, Ruan R (2016) Comprehensive techno-economic analysis of wastewater-based algal biofuel production: a case study. Bioresour Technol 211:584–593

    CAS  Article  PubMed  Google Scholar 

Download references


This work was financially supported by the Technology Agency of the Czech Republic, project no TE01020080.

Author information



Corresponding author

Correspondence to Irena Brányiková.

Additional information

The original version of this article was revised: The original version of this article unfortunately contained a mistake. Figures 1 and 2 were interchanged. The correct Figures 1 and 2 are now shown here.

An erratum to this article is available at

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaštánek, P., Kronusová, O., Kaštánek, F. et al. Selective bioaccumulation of rubidium by microalgae from industrial wastewater containing rubidium and lithium. J Appl Phycol 30, 461–467 (2018).

Download citation


  • Rubidium
  • Lithium
  • Microalgae
  • Bioaccumulation
  • Wastewater
  • Chlorella vulgaris