Advertisement

Journal of Applied Phycology

, Volume 30, Issue 1, pp 367–373 | Cite as

Suppression of DYRK ortholog expression affects wax ester fermentation in Euglena gracilis

  • Mitsuhiro Kimura
  • Takahiro Ishikawa
Article

Abstract

In the microalga Euglena gracilis, the storage polysaccharide paramylon (β-1,3-D-glucan) is degraded to glucose, and finally converted to wax esters under anaerobic conditions. The wax esters and paramylon are now considered to be valuable materials for applications in biofuel production and in medicine. Genetic improvements of wax esters and paramylon accumulation in Euglena would facilitate their large-scale industrial applications; however, such improvements have thus far been difficult to realize because the regulatory factors involved in the wax ester fermentation pathway remain mostly unknown. Recently, two of dual-specificity Tyr phosphorylation-regulated kinases, starch degradation 1 (STD1) and triacylglycerol accumulation regulator 1 (TAR1), have been reported to regulate triacylglycerol metabolism in Chlamydomonas reinhardtii. In this study, we identified the Euglena DYRK orthologous sequences, and gene-silencing of EgSTD1 and EgSTD2 showed an increase in accumulation of paramylon and the following anaerobic wax ester production. This result indicated that EgSTD1 and EgSTD2 play a significant role in regulation of the wax ester fermentation pathway.

Keywords

Euglena gracilis Wax ester fermentation DYRK family kinase 

Notes

Acknowledgements

We thank Dr. Yuji Tanaka, Ms. Kaeko Kurihara, Ms. Jun Luo, Dr. Takanori Maruta, and Dr. Takahisa Ogawa (Shimane University) for technical assistance and helpful discussions. This work was supported by CREST program from the JST.

Supplementary material

10811_2017_1235_MOESM1_ESM.docx (23 kb)
Table S1 (DOCX 23 kb)
10811_2017_1235_MOESM2_ESM.docx (36 kb)
Table S2 (DOCX 36 kb)
10811_2017_1235_MOESM3_ESM.docx (26 kb)
Table S3 (DOCX 26 kb)
10811_2017_1235_MOESM4_ESM.docx (18 kb)
Table S4 (DOCX 17 kb)
10811_2017_1235_MOESM5_ESM.pptx (55 kb)
Figure S1 (PPTX 55 kb)
10811_2017_1235_MOESM6_ESM.pptx (71 kb)
Figure S2 (PPTX 71 kb)
10811_2017_1235_MOESM7_ESM.pptx (330 kb)
Figure S3 (PPTX 329 kb)

References

  1. Abbassi R, Johns TG, Kassiou M, Munoz L (2015) DYRK1A in neurodegeneration and cancer: molecular basis and clinical implications. Pharmacol Ther 151:87–98CrossRefPubMedGoogle Scholar
  2. Aranda S, Laguna A, de la Luna S (2011) DYRK family of protein kinases: evolutionary relationships, biochemical properties, and functional roles. FASEB J 25:449–462CrossRefPubMedGoogle Scholar
  3. Barallobre MJ, Perier C, Bové J et al (2014) DYRK1A promotes dopaminergic neuron survival in the developing brain and in a mouse model of Parkinson’s disease. Cell Death Dis 5:e1289CrossRefPubMedPubMedCentralGoogle Scholar
  4. Clarke AE, Stone BA (1960) Structure of the paramylon from Euglena gracilis. Biochim Biophys Acta 44:161–163CrossRefPubMedGoogle Scholar
  5. Cranwell PA, Volkman JK (1981) Alkyl and steryl esters in a recent lacustrine sediment. Chem Geol 32:29–43CrossRefGoogle Scholar
  6. Grimme LH, Boardman NK (1972) Photochemical activities of a particle fraction P 1 obtained rom the green alga Chlorella fusca. Biochem Biophys Res Commun 49:1617–1623CrossRefPubMedGoogle Scholar
  7. Hill HZ, Schiff JA, Epstein HT (1966) Studies of chloroplast development in Euglena: XIII. Variation of ultraviolet sensitivity with extent of chloroplast development. Biophys J 6:125–133CrossRefPubMedPubMedCentralGoogle Scholar
  8. Inui H, Miyatake K, Nakano Y, Kitaoka S (1982) Wax ester fermentation in Euglena gracilis. FEBS Lett 150:89–93CrossRefGoogle Scholar
  9. Inui H, Miyatake K, Nakano Y, Kitaoka S (1983) Production and composition of wax esters by fermentation of Euglena gracilis. Agric Biol Chem 47:2669–2671Google Scholar
  10. Iseki M, Matsunaga S, Murakami A, Ohno K, Shiga K, Yoshida K, Sugai M, Takahashi T, Hori T, Watanabe M (2002) A blue-light-activated adenylyl cyclase mediates photoavoidance in Euglena gracilis. Nature 415:1047–1051CrossRefPubMedGoogle Scholar
  11. Kajikawa M, Sawaragi Y, Shinkawa H, Yamano T, Ando A, Kato M, Hirono M, Sato N, Fukuzawa H (2015) Algal dual-specificity tyrosine phosphorylation-regulated kinase, triacylglycerol accumulation regulator1, regulates accumulation of triacylglycerol in nitrogen or sulfur deficiency. Plant Physiol 168:752–764CrossRefPubMedPubMedCentralGoogle Scholar
  12. Kiss JZ, Roberts EM, Brown RM, Triemer RE (1988) X-ray and dissolution studies of paramylon storage granules from Euglena. Protoplasma 146:150–156CrossRefGoogle Scholar
  13. Knothe G (2008) “Designer” biodiesel: Optimizing fatty ester composition to improve fuel properties. Energy Fuel 22:1358–1364CrossRefGoogle Scholar
  14. Kondo Y, Kato A, Hojo H, Nozoe S, Takeuchi M, Ochi K (1992) Cytokine-related immunopotentiating activities of paramylon, a β-(1→3)-D-glucan from Euglena gracilis. Aust J Pharm 15:617–621Google Scholar
  15. Koren LE, Hutner SH (1967) High-yield media for photosynthesizing Euglena gracilis Z. J Protozool 14(Suppl):17Google Scholar
  16. Koritala S (1989) Microbiological synthesis of wax esters by Euglena gracilis. J Am Oil Chem Soc 66:133–134CrossRefGoogle Scholar
  17. Kuda T, Enomoto T, Yano T (2009) Effects of two storage β-1,3-glucans, laminaran from Eisenia bicyclis and paramylon from Euglena gracilis, on cecal environment and plasma lipid levels in rats. J Funct Foods 1:399–404CrossRefGoogle Scholar
  18. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefPubMedGoogle Scholar
  19. Liu L, Pohnert G, Wei D (2016) Extracellular metabolites from industrial microalgae and their biotechnological potential. Mar Drugs 14:191. doi: 10.3390/md14100191 CrossRefPubMedCentralGoogle Scholar
  20. Moriya H, Shimizu-Yoshida Y, Omori A, Iwashita S, Katoh M, Sakai A (2001) Yak1p, a DYRK family kinase, translocates to the nucleus and phosphorylates yeast Pop2p in response to a glucose signal. Genes Dev 15:1217–1228CrossRefPubMedPubMedCentralGoogle Scholar
  21. Reddy ASN, Marquez Y, Kalyna M, Barta A (2013) Complexity of the alternative splicing landscape in plants. Plant Cell 25:3657–3683CrossRefPubMedPubMedCentralGoogle Scholar
  22. Rosenberg A (1963) A comparison of lipid patterns in photosynthesizing and nonphotosynthesizing cells of Euglena gracilis. Biochemistry 2:1148–1154CrossRefPubMedGoogle Scholar
  23. Russo R, Barsanti L, Evangelista V, Frassanito AM, Longo V, Pucci L, Penno G, Gualtieri P (2017) Euglena gracilis paramylon activates human lymphocytes by upregulating pro-inflammatory factors. Food Sci Nutr 5:205–214CrossRefPubMedGoogle Scholar
  24. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  25. Schulz-Raffelt M, Chochois V, Auroy P, Cuiné S, Billon E, Dauvillée D, Li-Beisson Y, Peltier G (2016) Hyper-accumulation of starch and oil in a Chlamydomonas mutant affected in a plant-specific DYRK kinase. Biotechnol Biofuels 9:55. doi: 10.1186/s13068-016-0469-2 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Shibakami M, Tsubouchi G, Sohma M, Hayashi M (2015) Preparation of transparent self-standing thin films made from acetylated euglenoid β-1,3-glucans. Carbohydr Polym 133:421–428CrossRefPubMedGoogle Scholar
  27. Skurat AV, Dietrich AD (2004) Phosphorylation of Ser640 in muscle glycogen synthase by DYRK family protein kinases. J Biol Chem 279:2490–2498CrossRefPubMedGoogle Scholar
  28. Tamaki S, Maruta T, Sawa Y, Shigeoka S, Ishikawa T (2015) Biochemical and physiological analyses of NADPH-dependent thioredoxin reductase isozymes in Euglena gracilis. Plant Sci 236:29–36CrossRefPubMedGoogle Scholar
  29. Tanaka Y, Ogawa T, Maruta T, Yoshida Y, Arakawa K, Ishikawa T (2017) Glucan synthase-like 2 is indispensable for paramylon synthesis in Euglena gracilis. FEBS Lett 591:1360–1370CrossRefPubMedGoogle Scholar
  30. Teerawanichpan P, Qiu X (2010) Fatty acyl-CoA reductase and wax synthase from Euglena gracilis in the biosynthesis of medium-chain wax esters. Lipids 45:263–273CrossRefPubMedGoogle Scholar
  31. Yoshida Y, Tomiyama T, Maruta T, Tomita M, Ishikawa T, Arakawa K (2016) De novo assembly and comparative transcriptome analysis of Euglena gracilis in response to anaerobic conditions. BMC Genomics 17:182. doi: 10.1186/s12864-016-2540-6 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Life Science and Biotechnology, Faculty of Life and Environmental ScienceShimane UniversityMatsueJapan
  2. 2.Core Research for Evolutional Science and Technology (CREST)Japan Science and Technology Agency (JST)SaitamaJapan
  3. 3.Enzyme Research Team, Biomass Engineering Research DivisionRIKEN Center for Sustainable Resource ScienceSaitamaJapan

Personalised recommendations